Direct interface engineering using dopant of hole transport layer for efficient inorganic perovskite solar cells

被引:4
|
作者
Park, S. [1 ]
Lee, C. [1 ]
Lee, C. [1 ]
Kim, T. [1 ]
Ko, Y. [3 ]
Jun, Y. [1 ,2 ]
机构
[1] Korea Univ, Grad Sch Energy & Environm, Dept Energy Environm Policy & Technol, KU KIST Green Sch, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol KIST, Clean Energy Res Div, Energy Mat Res Ctr, Seoul 02792, South Korea
[3] Gumi Elect & Informat Technol Res Inst GERI, Nano Elect Mat & Components Res Ctr, Gumi 35027, South Korea
基金
新加坡国家研究基金会;
关键词
Perovskite solar cell; Dopant; Hole transport layer; Interface engineering; Commercialization; Inorganic; HIGHLY EFFICIENT;
D O I
10.1016/j.mtchem.2023.101551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With respect to the aim of achieving a suitable optical band gap and high thermal and chemical stability in next-generation perovskite solar cells (PSCs), inorganic CsPbI3 perovskite has gained significant attention. However, when it absorbs light, it quickly transforms into an undesired nonperovskite yellow phase at 25 degrees C. Therefore, it is crucial to stabilize the phase by reducing the defect density, which acts as a nonradiative recombination center at the interface of each layer. In this paper, we present an efficient interface treatment method that does not require any additional surface treatment such as annealing or coating, and the dopant Mn(TFSI)2 is directly mixed with the hole transporting material instead of bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI). The use of Mn(TFSI)2 as a dopant diminishes the interfacial defects between the perovskite and hole transporting layer, reducing nonradiative recombi-nation, increasing the lifetime of the carrier, and improving the power conversion efficiency from 16.5% for the control device using conventional Li-TFSI as a dopant to 17.6%. Moreover, the Mn(TFSI)2-doped device demonstrates superior long-term stability for 1000 h under ambient conditions without encap-sulation, demonstrating 95% efficiency when compared with the initial performance. Therefore, Mn(TFSI)2 is a more powerful dopant of HTL and can increase the power conversion efficiency of PSCs by passivating the interface between the perovskite and HTL. Using Mn(TFSI)2, it is possible to quickly and effectively manufacture a stable inorganic perovskite device. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Efficient and stable perovskite solar cells by interface engineering at the interface of electron transport layer/perovskite
    Kumar, Anjan
    Singh, Sangeeta
    Sharma, Amit
    Ahmed, Emad M.
    OPTICAL MATERIALS, 2022, 132
  • [2] Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells
    Abidin, Nurul Aliyah Zainal
    Arith, Faiz
    Noorasid, N. Syamimi
    Sarkawi, Hafez
    Mustafa, A. Nizamuddin
    Safie, N. E.
    Shah, A. S. Mohd
    Azam, M. A.
    Chelvanathan, Puvaneswaran
    Amin, Nowshad
    RSC ADVANCES, 2023, 13 (48) : 33797 - 33819
  • [3] Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells
    Sathiyan, Govindasamy
    Syed, Ali Asgher
    Chen, Cheng
    Wu, Cheng
    Tao, Li
    Ding, Xingdong
    Miao, Yawei
    Li, Gongqiang
    Cheng, Ming
    Ding, Liming
    NANO ENERGY, 2020, 72 (72)
  • [4] Undoped Hole Transport Layer Toward Efficient and Stable Inorganic Perovskite Solar Cells
    Li, Zhuowei
    Wang, Junlin
    Deng, Yanyu
    Xi, Jianing
    Zhang, Yi
    Liu, Chunyu
    Guo, Wenbin
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (18)
  • [5] Interface engineering of organic hole transport layer with facile molecular doping for highly efficient perovskite solar cells
    Park, Hansol
    Heo, Jihyeon
    Jeong, Bum Ho
    Lee, Jongmin
    Park, Hui Joon
    JOURNAL OF POWER SOURCES, 2023, 556
  • [6] Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination
    Zhang, Jinbao
    Daniel, Quentin
    Zhang, Tian
    Wen, Xiaoming
    Xu, Bo
    Sun, Licheng
    Bach, Udo
    Cheng, Yi-Bing
    ACS NANO, 2018, 12 (10) : 10452 - 10462
  • [7] Efficient and stable inverted planar perovskite solar cells using dopant-free CuPc as hole transport layer
    Han, Jinghui
    Tu, Yuxue
    Liu, Zhiyong
    Liu, Xingyue
    Ye, Haibo
    Tang, Zirong
    Shi, Tielin
    Liao, Guanglan
    ELECTROCHIMICA ACTA, 2018, 273 : 273 - 281
  • [8] An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells
    Guo, Yaxiong
    Lei, Hongwei
    Xiong, Liangbin
    Li, Borui
    Fang, Guojia
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (05) : 2157 - 2165
  • [9] Dopant-Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules
    Liu, Cheng
    Igci, Cansu
    Yang, Yi
    Syzgantseva, Olga A.
    Syzgantseva, Maria A.
    Rakstys, Kasparas
    Kanda, Hiroyuki
    Shibayama, Naoyuki
    Ding, Bin
    Zhang, Xianfu
    Jankauskas, Vygintas
    Ding, Yong
    Dai, Songyuan
    Dyson, Paul J.
    Nazeeruddin, Mohammad Khaja
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (37) : 20489 - 20497
  • [10] Interface engineering with polymer hole transport layer for 3D perovskite solar cells
    Mather, Thomas
    Ghavaminia, Ehsan
    Kaul, Anupama B.
    MRS ADVANCES, 2023, 8 (16) : 907 - 911