An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms

被引:6
|
作者
Sinnaswamy, Renugadevi Ammapalayam [1 ]
Palanisamy, Natesan [2 ]
Subramaniam, Kavitha [2 ]
Muthusamy, Suresh [1 ]
Lamba, Ravita [3 ]
Sekaran, Sreejith [4 ]
机构
[1] Kongu Engn Coll Autonomous, Dept Elect & Commun Engn, Erode, Tamil Nadu, India
[2] Kongu Engn Coll Autonomous, Dept Comp Sci & Engn, Erode, Tamil Nadu, India
[3] Malaviya Natl Inst Technol Jaipur, Dept Elect Engn, Jaipur, Rajasthan, India
[4] Natl Inst Technol Silchar, Dept Elect Engn, Silchar, Assam, India
关键词
Aneurysm; Detection; Machine learning; Deep learning; ABDOMINAL AORTIC-ANEURYSM; RISK;
D O I
10.1007/s11277-023-10532-y
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Aneurysm (Rupture of blood vessels) may happen in the cerebrum, abdominal aorta and thoracic aorta of humans, which has a high fatal rate. The advancement of the artificial technologies specifically machine learning algorithms and deep learning models have attempted to predict the aneurysm, which may reduce the death rate. The main objective of this paper is to provide the review of various algorithms and models for the early prediction of the various types of aneurysms. The focused literature review was conducted from the preferred journals from 2007 to 2022 on various parameters such as way of collecting images, the techniques used, number of images used in data set, performance metrics and future work. The summarized overview of advances in prediction of aneurysms using the machine learning algorithms from non linear kernel support regression algorithm to 3D Unet architecture of deep learning models starting from CT scan images to final performance analysis in prediction. The range of sensitivity, specificity and area under receiving operating characteristic was from 0. 7 to 1 for the abdominal aortic aneurysm detection, intracranial aneurysm detection. The thoracic aortic aneurysm was not concentrated much in the literature review, so the prediction of thoracic aortic aneurysm using machine learning as well as deep learning model is recommended.
引用
收藏
页码:2055 / 2080
页数:26
相关论文
共 50 条
  • [1] An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms
    Renugadevi Ammapalayam Sinnaswamy
    Natesan Palanisamy
    Kavitha Subramaniam
    Suresh Muthusamy
    Ravita Lamba
    Sreejith Sekaran
    Wireless Personal Communications, 2023, 131 : 2055 - 2080
  • [2] An Extensive Review of Machine Learning and Deep Learning Techniques on Heart Disease Classification and Prediction
    Rani, Pooja
    Kumar, Rajneesh
    Jain, Anurag
    Lamba, Rohit
    Sachdeva, Ravi Kumar
    Kumar, Karan
    Kumar, Manoj
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (6) : 3331 - 3349
  • [3] Review of machine learning and deep learning models for toxicity prediction
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Song, Meng
    Li, Zoe
    Khan, Md Kamrul Hasan
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1952 - 1973
  • [4] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899
  • [5] Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review
    Aljameel, Sumayh S.
    Alzahrani, Manar
    Almusharraf, Reem
    Altukhais, Majd
    Alshaia, Sadeem
    Sahlouli, Hanan
    Aslam, Nida
    Khan, Irfan Ullah
    Alabbad, Dina A.
    Alsumayt, Albandari
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (01)
  • [6] Comparison of deep learning and conventional machine learning methods for classification of colon polyp types
    Dogan, Refika Sultan
    Yilmaz, Bulent
    EUROBIOTECH JOURNAL, 2021, 5 (01): : 34 - 42
  • [7] A Review on Opportunities and Challenges of Machine Learning and Deep Learning for Eye Movements Classification
    Fikri, Muhammad Ainul
    Santosa, Paulus Insap
    Wibirama, Sunu
    2021 IEEE INTERNATIONAL BIOMEDICAL INSTRUMENTATION AND TECHNOLOGY CONFERENCE (IBITEC): THE IMPROVEMENT OF HEALTHCARE TECHNOLOGY TO ACHIEVE UNIVERSAL HEALTH COVERAGE, 2021, : 65 - 70
  • [8] Review of machine learning and deep learning application in mine microseismic event classification
    Wang Jinqiang
    Prabhat, Basnet
    Shakil, Mahtab
    MINING OF MINERAL DEPOSITS, 2021, 15 (01): : 19 - 26
  • [9] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    International Journal of Advanced Computer Science and Applications, 2024, 15 (10) : 1155 - 1173
  • [10] Machine Learning and Deep Learning for Throughput Prediction
    Lee, Dongwon
    Lee, Joohyun
    12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021), 2021, : 452 - 454