Part-of-speech- and syntactic-aware graph convolutional network for aspect-level sentiment classification

被引:1
|
作者
Tian, Yumin [1 ]
Yue, Ruifeng [1 ]
Wang, Di [1 ]
Liu, Jinhui [1 ]
Liang, Xiao [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-level sentiment classification; Part-of-speech; Syntactic; Graph convolutional network;
D O I
10.1007/s11042-023-16671-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aspect-level sentiment classification is a task within the realm of fine-grained sentiment analysis that focuses on identifying the sentiment polarity specific to a particular aspect of review data. However, most existing methods fail to account for the unique expression and language style used in review data, which limits their sentiment classification performance. To address this issue, we propose a novel method called Part-of-Speech- and Syntactic-Aware Graph Convolutional Network (PSA-GCN) that aims to integrate part-of-speech (POS) information and syntactic knowledge into word embeddings. Specifically, we simplify the complex POS tags into six basic categories. At the same time, we only consider the connection relationship between words in the syntax tree that does not involve dependency types, in order to avoid the inaccuracies of overly-subdivided POS tags and the adverse effects caused by syntax dependencies of erroneous types on sentiment analysis. By incorporating these components into our model, the PSA-GCN is able to enhance the representation power of word embeddings and thus improve the performance in aspect-level sentiment classification. PSA-GCN first extracts part-of-speech tags and the syntactic parse tree to model the linguistic information present in the review data. It then considers the sentiment priors of different part-of-speech pairs holistically to construct a part-of-speech dependency graph, and a syntactic dependency graph utilizing the syntactic information from the parse tree. These graphs are initialized with Bert embeddings, and graph reasoning is performed to obtain the final part-of-speech and syntactic-aware language representation. Finally, aspect-level sentiment polarity is obtained through the classification of the final language representations. Our experiments on Restaurant, Laptop, and Twitter datasets reveal that PSA-GCN outperforms baseline models significantly in all three datasets.
引用
收藏
页码:28793 / 28806
页数:14
相关论文
共 50 条
  • [1] Part-of-speech- and syntactic-aware graph convolutional network for aspect-level sentiment classification
    Yumin Tian
    Ruifeng Yue
    Di Wang
    Jinhui Liu
    Xiao Liang
    Multimedia Tools and Applications, 2024, 83 : 28793 - 28806
  • [2] Syntactic Structure-Enhanced Dual Graph Convolutional Network for Aspect-Level Sentiment Classification
    Chen, Jiehai
    Qiu, Zhixun
    Liu, Junxi
    Xue, Yun
    Cai, Qianhua
    MATHEMATICS, 2023, 11 (18)
  • [3] Syntactic Graph Attention Network for Aspect-Level Sentiment Analysis
    Yuan L.
    Wang J.
    Yu L.-C.
    Zhang X.
    IEEE. Trans. Artif. Intell., 2024, 1 (140-153): : 140 - 153
  • [4] A Convolutional Neural Network for Aspect-Level Sentiment Classification
    Xing, Yongping
    Xiao, Chuangbai
    Wu, Yifei
    Ding, Ziming
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (14)
  • [5] Syntactic and semantic analysis network for aspect-level sentiment classification
    Dianyuan Zhang
    Zhenfang Zhu
    Shiyong Kang
    Guangyuan Zhang
    Peiyu Liu
    Applied Intelligence, 2021, 51 : 6136 - 6147
  • [6] Syntactic and semantic analysis network for aspect-level sentiment classification
    Zhang, Dianyuan
    Zhu, Zhenfang
    Kang, Shiyong
    Zhang, Guangyuan
    Liu, Peiyu
    APPLIED INTELLIGENCE, 2021, 51 (08) : 6136 - 6147
  • [7] Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification
    Zhao, Pinlong
    Hou, Linlin
    Wu, Ou
    KNOWLEDGE-BASED SYSTEMS, 2020, 193
  • [8] Multi-View Gated Graph Convolutional Network for Aspect-Level Sentiment Classification
    Wu, Lijuan
    Zhang, Guixian
    Lei, Zhi
    Huang, Zhirong
    Lu, Guangquan
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2022), PT I, 2022, 13725 : 489 - 504
  • [9] Syntactic Edge-Enhanced Graph Convolutional Networks for Aspect-Level Sentiment Classification With Interactive Attention
    Xiao, Yao
    Zhou, Guangyou
    IEEE ACCESS, 2020, 8 : 157068 - 157080
  • [10] A Graph Convolutional Network Based on Sentiment Support for Aspect-Level Sentiment Analysis
    Gao, Ruiding
    Jiang, Lei
    Zou, Ziwei
    Li, Yuan
    Hu, Yurong
    APPLIED SCIENCES-BASEL, 2024, 14 (07):