Hydrogen-bonding enables two-dimensional metal/semiconductor tunable contacts approaching the quantum limit and the modified Schottky-Mott limit simultaneously

被引:13
|
作者
Liu, Dexing [1 ]
Liu, Ziyi [1 ]
Zhu, Jiahao [1 ]
Zhang, Min [1 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE FUNCTIONALIZATION; RESISTANCE; BARRIER; SEMICONDUCTOR; TRANSISTORS; GRAPHENE; MXENES;
D O I
10.1039/d3mh00736g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving efficient electrical contacts in two-dimensional (2D) semiconductors is increasingly critical with the continuous scaling down of transistors. van der Waals (vdW) contacts with weak Fermi-level pinning are still hindered by the additional contact resistance due to weak interlayer coupling. Here, based on first-principles, we propose to exploit hydrogen-bonding interactions to intrinsically overcome the inherent vdW gap. Various metal/semiconductor heterojunctions with hydroxyl-terminated MXenes as the metal electrode demonstrate clean Ohmic contacts with ultralow contact resistance approaching the quantum limit via strong hydrogen-bonding of O-HMIDLINE HORIZONTAL ELLIPSISX (X = N, O, S, Se, etc.) at the interface. Hydrogen-bonding contacts are further shown to be an advantageous approach to achieve near-perfect N-type contacts for emerging 2D nitride, oxide, halide, and chalcogenide semiconductors that can simultaneously approach the modified Schottky-Mott limit. We finally discuss the general design concepts for hydrogen-bonding contacts, demonstrating their potential to go beyond vdW contacts in achieving ideal electrical contacts in 2D semiconductors. This first-principles study proposes utilising hydrogen-bonding to overcome the van der Waals gap and demonstrates Ohmic contacts approaching the quantum limit and the modified Schottky-Mott limit in various two-dimensional semiconductor systems.
引用
收藏
页码:5621 / 5632
页数:12
相关论文
共 5 条
  • [1] Approaching the quantum limit in two-dimensional semiconductor contacts
    Li, Weisheng
    Gong, Xiaoshu
    Yu, Zhihao
    Ma, Liang
    Sun, Wenjie
    Gao, Si
    Koroglu, Cagil
    Wang, Wenfeng
    Liu, Lei
    Li, Taotao
    Ning, Hongkai
    Fan, Dongxu
    Xu, Yifei
    Tu, Xuecou
    Xu, Tao
    Sun, Litao
    Wang, Wenhui
    Lu, Junpeng
    Ni, Zhenhua
    Li, Jia
    Duan, Xidong
    Wang, Peng
    Nie, Yuefeng
    Qiu, Hao
    Shi, Yi
    Pop, Eric
    Wang, Jinlan
    Wang, Xinran
    NATURE, 2023, 613 (7943) : 274 - +
  • [2] Approaching the quantum limit in two-dimensional semiconductor contacts
    Weisheng Li
    Xiaoshu Gong
    Zhihao Yu
    Liang Ma
    Wenjie Sun
    Si Gao
    Çağıl Köroğlu
    Wenfeng Wang
    Lei Liu
    Taotao Li
    Hongkai Ning
    Dongxu Fan
    Yifei Xu
    Xuecou Tu
    Tao Xu
    Litao Sun
    Wenhui Wang
    Junpeng Lu
    Zhenhua Ni
    Jia Li
    Xidong Duan
    Peng Wang
    Yuefeng Nie
    Hao Qiu
    Yi Shi
    Eric Pop
    Jinlan Wang
    Xinran Wang
    Nature, 2023, 613 : 274 - 279
  • [3] Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions
    Liu, Yuan
    Guo, Jian
    Zhu, Enbo
    Liao, Lei
    Lee, Sung-Joon
    Ding, Mengning
    Shakir, Imran
    Gambin, Vincent
    Huang, Yu
    Duan, Xiangfeng
    NATURE, 2018, 557 (7707) : 696 - +
  • [4] Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit
    Song, Seunguk
    Sim, Yeoseon
    Kim, Se-Yang
    Hwa, Jung
    Oh, Inseon
    Na, Woongki
    Lee, Do Hee
    Wang, Jaewon
    Yan, Shili
    Liu, Yinan
    Kwak, Jinsung
    Chen, Jian-Hao
    Cheong, Hyeonsik
    Yoo, Jung-Woo
    Lee, Zonghoon
    Kwon, Soon-Yong
    NATURE ELECTRONICS, 2020, 3 (04) : 207 - 215
  • [5] Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal–semiconductor contacts at the Schottky–Mott limit
    Seunguk Song
    Yeoseon Sim
    Se-Yang Kim
    Jung Hwa Kim
    Inseon Oh
    Woongki Na
    Do Hee Lee
    Jaewon Wang
    Shili Yan
    Yinan Liu
    Jinsung Kwak
    Jian-Hao Chen
    Hyeonsik Cheong
    Jung-Woo Yoo
    Zonghoon Lee
    Soon-Yong Kwon
    Nature Electronics, 2020, 3 : 207 - 215