Nonergodicity of confined superdiffusive fractional Brownian motion

被引:8
|
作者
Liang, Yingjie [1 ,2 ]
Wang, Wei [2 ]
Metzler, Ralf [2 ,3 ]
Cherstvy, Andrey G. [2 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Nanjing 211100, Peoples R China
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[3] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
关键词
27;
D O I
10.1103/PhysRevE.108.L052101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using stochastic simulations supported by analytics we determine the degree of nonergodicity of box-confined fractional Brownian motion for both sub-and superdiffusive Hurst exponents H. At H > 1/2 the nonequivalence of the ensemble-and time-averaged mean-squared displacements (TAMSDs) is found to be most pronounced (with a giant spread of individual TAMSDs at H -> 1), with two distinct short-lag-time TAMSD exponents.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Inertia triggers nonergodicity of fractional Brownian motion
    Cherstvy, Andrey G.
    Wang, Wei
    Metzler, Ralf
    Sokolov, Igor M.
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [2] Superdiffusive trajectories in Brownian motion
    Duplat, Jerome
    Kheifets, Simon
    Li, Tongcang
    Raizen, Mark G.
    Villermaux, Emmanuel
    [J]. PHYSICAL REVIEW E, 2013, 87 (02):
  • [3] Nonergodicity of reset geometric Brownian motion
    Vinod, Deepak
    Cherstvy, Andrey G.
    Wang, Wei
    Metzler, Ralf
    Sokolov, Igor M.
    [J]. PHYSICAL REVIEW E, 2022, 105 (01)
  • [4] Nonergodicity of Brownian motion in a periodic potential
    Lu Hong
    Qin Li
    Bao Jing-Dong
    [J]. ACTA PHYSICA SINICA, 2009, 58 (12) : 8127 - 8133
  • [5] Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries
    Jeon, Jae-Hyung
    Metzler, Ralf
    [J]. PHYSICAL REVIEW E, 2010, 81 (02)
  • [6] Fractional Brownian motion with random diffusivity: emerging residual nonergodicity below the correlation time
    Wang, Wei
    Cherstvy, Andrey G.
    Chechkin, Aleksei, V
    Thapa, Samudrajit
    Seno, Flavio
    Liu, Xianbin
    Metzler, Ralf
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (47)
  • [7] Anomalous diffusion, non-Gaussianity, and nonergodicity for subordinated fractional Brownian motion with a drift
    Liang, Yingjie
    Wang, Wei
    Metzler, Ralf
    [J]. Physical Review E, 2023, 108 (02)
  • [8] Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes
    Wang, Wei
    Cherstvy, Andrey G.
    Kantz, Holger
    Metzler, Ralf
    Sokolov, Igor M.
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [9] Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks
    Liang, Yingjie
    Wang, Wei
    Metzler, Ralf
    Cherstvy, Andrey G.
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [10] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    [J]. ECONOMICS LETTERS, 2016, 145 : 52 - 55