Species classification of Antarctic pack-ice seals using very high-resolution imagery

被引:0
|
作者
Wethington, Michael [1 ,4 ]
Goncalves, Bento C. [1 ]
Talis, Emma [2 ,3 ]
Sen, Bilgecan [1 ,3 ]
Lynch, Heather J. [1 ,3 ]
机构
[1] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY USA
[2] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY USA
[3] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY USA
[4] SUNY Stony Brook, Dept Ecol & Evolut, 100 Nicolls Rd, Stony Brook, NY 11794 USA
基金
美国国家航空航天局;
关键词
Antarctic pack-ice seals; Random Forest; Ripley's K; spatial ecology; species identification; very high-resolution imagery; ENVIRONMENTAL-CHANGE; POPULATION; ABUNDANCE; CENSUS; RATES; DIET;
D O I
10.1111/mms.13088
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
We introduce a semiautomated machine learning method that employs high-resolution imagery for the species-level classification of Antarctic pack-ice seals. By incorporating the spatial distribution of hauled-out seals on ice into our analytical framework, we significantly enhance the accuracy of species identification. Employing a Random Forest model, we achieved 97.4% accuracy for crabeater seals and 98.0% for Weddell seals. To further refine our classification, we included three linearity measures: mean distance to a group's regression line, straightness index, and sinuosity index. Additional variables, such as the number of neighboring seals within a 250 m radius and distance of individual seals to the sea ice edge, also contributed to improved accuracy. Our study marks a significant advancement in the development of a cost-effective, unified Antarctic seal monitoring system, enhancing our understanding of seal spatial behavior and enabling more effective population tracking amid environmental changes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Estimation of detection probability in aerial surveys of Antarctic pack-ice seals
    Southwell, Colin
    Borchers, David
    Paxton, Charles G. M.
    Burt, Louise
    de la Mare, William
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2007, 12 (01) : 41 - 54
  • [2] Estimation of detection probability in aerial surveys of antarctic pack-ice seals
    Colin Southwell
    David Borchers
    Charles G. M. Paxton
    Louise Burt
    William de la Mare
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12 : 41 - 54
  • [3] Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing
    Forcada, Jaume
    Trathan, Philip N.
    Boveng, Peter L.
    Boyd, Ian L.
    Burns, Jennifer M.
    Costa, Daniel P.
    Fedak, Michael
    Rogers, Tracey L.
    Southwell, Colin J.
    [J]. BIOLOGICAL CONSERVATION, 2012, 149 (01) : 40 - 50
  • [4] AUTOMATED EXTRACTION OF PACK ICE MOTION FROM ADVANCED VERY HIGH-RESOLUTION RADIOMETER IMAGERY
    NINNIS, RM
    EMERY, WJ
    COLLINS, MJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1986, 91 (C9): : 725 - 734
  • [5] Leukocyte counts in three sympatric pack-ice seal species from the western Antarctic Peninsula
    Soledad Leonardi, Maria
    D'Amico, Veronica L.
    Elba Marquez, Maria
    Rogers, Tracey L.
    Negrete, Javier
    [J]. POLAR BIOLOGY, 2019, 42 (10) : 1801 - 1809
  • [6] Leukocyte counts in three sympatric pack-ice seal species from the western Antarctic Peninsula
    María Soledad Leonardi
    Verónica L. D’Amico
    María Elba Márquez
    Tracey L. Rogers
    Javier Negrete
    [J]. Polar Biology, 2019, 42 : 1801 - 1809
  • [7] Complementary use of stable isotopes and fatty acids for quantitative diet estimation of sympatric predators, the Antarctic pack-ice seals
    A. I. Guerrero
    A. Pinnock
    J. Negrete
    T. L. Rogers
    [J]. Oecologia, 2021, 197 : 729 - 742
  • [8] Complementary use of stable isotopes and fatty acids for quantitative diet estimation of sympatric predators, the Antarctic pack-ice seals
    Guerrero, A., I
    Pinnock, A.
    Negrete, J.
    Rogers, T. L.
    [J]. OECOLOGIA, 2021, 197 (03) : 729 - 742
  • [9] SealNet 2.0: Human-Level Fully-Automated Pack-Ice Seal Detection in Very-High-Resolution Satellite Imagery with CNN Model Ensembles
    Goncalves, Bento C.
    Wethington, Michael
    Lynch, Heather J.
    [J]. REMOTE SENSING, 2022, 14 (22)
  • [10] Object-based classification of urban plant species from very high-resolution satellite imagery
    Sicard, Pierre
    Coulibaly, Fatimatou
    Lameiro, Morgane
    Araminiene, Valda
    De Marco, Alessandra
    Sorrentino, Beatrice
    Anav, Alessandro
    Manzini, Jacopo
    Hoshika, Yasutomo
    Moura, Barbara Baesso
    Paoletti, Elena
    [J]. URBAN FORESTRY & URBAN GREENING, 2023, 81