Measurement-induced state transitions in a superconducting qubit: Within the rotating-wave approximation

被引:22
|
作者
Khezri, Mostafa [1 ]
Opremcak, Alex [1 ]
Chen, Zijun [1 ]
Miao, Kevin C. [1 ]
Mcewen, Matt [1 ,2 ]
Bengtsson, Andreas [1 ]
White, Theodore [1 ]
Naaman, Ofer [1 ]
Sank, Daniel [1 ]
Korotkov, Alexander N. [1 ,3 ]
Chen, Yu [1 ]
Smelyanskiy, Vadim [1 ]
机构
[1] Google Quantum AI, Goleta, CA 93117 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA
[3] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA USA
关键词
QUANTUM; PHOTON;
D O I
10.1103/PhysRevApplied.20.054008
中图分类号
O59 [应用物理学];
学科分类号
摘要
Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace in a process we refer to as a measurement-induced state transition (MIST). These transitions degrade readout fidelity, and constitute leakage, which precludes further operation of the qubit in, for example, error correction. Here we study these transitions experimentally with a transmon qubit by measuring their dependence on qubit frequency, average resonator photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semiclassical model of these transitions based on the rotating-wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, we show that occupation in these higher energy levels poses a major challenge for fast qubit reset.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Measurement-Induced State Transitions in a Superconducting Qubit: Beyond the Rotating Wave Approximation
    Sank, Daniel
    Chen, Zijun
    Khezri, Mostafa
    Kelly, J.
    Barends, R.
    Campbell, B.
    Chen, Y.
    Chiaro, B.
    Dunsworth, A.
    Fowler, A.
    Jeffrey, E.
    Lucero, E.
    Megrant, A.
    Mutus, J.
    Neeley, M.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Vainsencher, A.
    White, T.
    Wenner, J.
    Korotkov, Alexander N.
    Martinis, John M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (19)
  • [2] Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation
    Sornborger, AT
    Cleland, AN
    Geller, MR
    PHYSICAL REVIEW A, 2004, 70 (05): : 052315 - 1
  • [3] Dynamics of measurement-induced state transitions in superconducting qubits
    Hirasaki, Yuta
    Daimon, Shunsuke
    Kanazawa, Naoki
    Itoko, Toshinari
    Tokunari, Masao
    Saitoh, Eiji
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (12)
  • [5] Measurement-induced state transitions in dispersive qubit-readout schemes
    Nesterov, Konstantin N.
    Pechenezhskiy, Ivan V.
    PHYSICAL REVIEW APPLIED, 2024, 22 (06):
  • [6] ON THE ROTATING-WAVE APPROXIMATION
    RAMIREZ, R
    ORSZAG, M
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 272 - 272
  • [7] Generalized rotating-wave approximation to biased qubit-oscillator systems
    Zhang, Yu-Yu
    Chen, Qing-Hu
    Zhao, Yang
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [8] Quantum optimal control within the rotating-wave approximation
    Keck, Maximilian
    Mueller, Matthias M.
    Calarco, Tommaso
    Montangero, Simone
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [9] Entanglement Evolution of a Two-Qubit System beyond Rotating-Wave Approximation
    Yang Qing
    Yang Ming
    Cao Zhuo-Liang
    CHINESE PHYSICS LETTERS, 2009, 26 (04)
  • [10] Generalized rotating-wave approximation for the two-qubit quantum Rabi model
    Zhang, Yu-Yu
    Chen, Qing-Hu
    PHYSICAL REVIEW A, 2015, 91 (01):