Offline Parameter Estimation of a Fractional-Order Buck Converter Model

被引:0
|
作者
AbdelAty, Amr M. [1 ]
Al-Durra, Ahmed [1 ]
Zeineldin, Hatem [1 ]
El-Saadany, Ehab F. [1 ]
机构
[1] Khalifa Univ, Dept EECS, Adv Power & Energy Ctr, Abu Dhabi, U Arab Emirates
关键词
Fractional-order model; Buck converter; Continuous conduction mode; cuckoo search optimizer; IDENTIFICATION; OPTIMIZATION; CAPACITOR; SYSTEM;
D O I
10.1109/ISGTMiddleEast56437.2023.10078636
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Experimental studies have proven that real capacitors and inductors are better represented by fractional-order (FO) models. This is due to dielectric non-idealities, Eddy current losses, and hysteresis effects. This fact has motivated many studies on the modeling and analysis of FO converters, ie., converters with fractional capacitors and inductors. On the other hand, parameter identification of power electronic systems is an area of increasing importance. This is due to its application to adaptive control and condition monitoring. This paper investigates the problem of parameter identification of FO buck converter in continuous conduction mode (CCM). To this end, the Trigeassou approximation of the FO integral is compared with the predict-evaluate-correct-evaluate (PECE) method to justify its use in this model in terms of accuracy and computation time. The identification problem is formulated based on non-invasive measurement quantities (input current and output voltage). Four cases of synthetic data, with added noise, are used to validate the effectiveness of the proposed identification procedure. The cuckoo search optimizer (CSO) is used to identify the parameters, and it demonstrates outstanding consistency and accuracy in the results across independent runs.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [2] Fractional-Order Approximation and Synthesis of a PID Controller for a Buck Converter
    Soriano-Sanchez, Allan G.
    Rodriguez-Licea, Martin A.
    Perez-Final, Francisco J.
    Vazquez-Lopez, Jose A.
    ENERGIES, 2020, 13 (03)
  • [3] A new model of Hopfield network with fractional-order neurons for parameter estimation
    Fazzino, Stefano
    Caponetto, Riccardo
    Patane, Luca
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2671 - 2685
  • [4] A new model of Hopfield network with fractional-order neurons for parameter estimation
    Stefano Fazzino
    Riccardo Caponetto
    Luca Patanè
    Nonlinear Dynamics, 2021, 104 : 2671 - 2685
  • [5] Modeling and analysis method of fractional-order buck-boost converter
    Fang, Shucheng
    Wang, Xiaogang
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2020, 48 (09) : 1493 - 1510
  • [6] Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer
    Marzougui, Soumaya
    Bedoui, Saida
    Atitallah, Asma
    Abderrahim, Kamel
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (10) : 5366 - 5391
  • [7] Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer
    Soumaya Marzougui
    Saïda Bedoui
    Asma Atitallah
    Kamel Abderrahim
    Circuits, Systems, and Signal Processing, 2022, 41 : 5366 - 5391
  • [8] Improved fractional-order complementary sliding mode control for fractional-order Buck converter based on Riemann-Liouville derivative
    基于Riemann-Liouville分数阶模型的Buck变换器改进分数阶互补滑模控制
    Zeng, Qing-Shuang (zqshuang@hit.edu.cn), 1600, Northeast University (39):
  • [9] Dynamic Analysis and Fractional-Order Terminal Sliding Mode Control of a Fractional-Order Buck Converter Operating in Discontinuous Conduction Mode
    Jia, Zirui
    Liu, Ling
    Liu, Chongxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (04):
  • [10] A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process
    Wang, Yadong
    Liu, Chong
    FRACTAL AND FRACTIONAL, 2024, 8 (07)