Core-Shell Quantum Dot-Embedded Polymers for Antistatic Applications

被引:0
|
作者
Ekim, Sunay Dilara [1 ]
Aydin, Firdevs [2 ]
Kaya, Gorkem Eylul [1 ]
Baytekin, H. Tarik [2 ,3 ]
Asil, Demet [2 ,3 ,4 ,5 ]
Baytekin, Bilge [1 ,6 ]
机构
[1] Bilkent Univ, Natl Nanotechnol Res Ctr UNAM, TR-06800 Ankara, Turkiye
[2] Middle East Tech Univ, Dept Chem, TR-06800 Ankara, Turkiye
[3] Middle East Tech Univ, Polymer Sci & Technol Program, TR-06800 Ankara, Turkiye
[4] Middle East Tech Univ, Micro & Nanotechnol Grad Program, TR-06800 Ankara, Turkiye
[5] METU MEMS Ctr, TR-06510 Ankara, Turkiye
[6] Bilkent Univ, Dept Chem, TR-06800 Ankara, Turkiye
关键词
quantum dots; core-shell; contact charging; polymers; antistatic; SOLAR-CELLS; TRIBOELECTRICITY; NANOCRYSTALS; CONVERSION; CDSE/ZNSE; RADICALS; FRICTION; CHARGES; CDSE;
D O I
10.1021/acsanm.3c03381
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrical charges develop on the surfaces of two insulator materials when they are in contact and separated. The retention of charges on insulator polymers causes material losses and hazards in industries using these polymers. Here, we show that a set of core-shell quantum dots embedded into a common polymer can destabilize the charges on the polymer. The locations of the charge carriers in the nanostructure, or the "type" of the dots, affect their discharging ability, which can also be manipulated or reverted remotely by light. The mechanism of antistatic action is presumed to contain interaction with polymer mechanospecies. The quantum dot embedding renders the polymers antistatic without changing their conductivity. Such antistatic additives, by which the polymers remain insulating, can be used to prevent static charges, e.g., in electronic coatings and in other antistatic applications.
引用
收藏
页码:22693 / 22700
页数:8
相关论文
共 50 条
  • [1] Development of quantum dot-embedded nanoparticles for biothermal imaging
    Hanson, Willard L.
    Michael, Nancy L.
    Kim, Choong-Un
    Han, Bumsoo
    [J]. PROCEEDING OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2007, 2007, : 75 - 76
  • [2] InAsP Quantum Dot-Embedded InP Nanowires toward Silicon Photonic Applications
    Chang, Ting-Yuan
    Kim, Hyunseok
    Hubbard, William A.
    Azizur-Rahman, Khalifa M.
    Ju, Jung Jin
    Kim, Je-Hyung
    Lee, Wook-Jae
    Huffaker, Diana
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (10) : 12488 - 12494
  • [3] Quantum dot bioconjugation during core-shell synthesis
    Wang, Qiangbin
    Liu, Yan
    Ke, Yonggang
    Yan, Hao
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (02) : 316 - 319
  • [4] Interdiffusion in core-shell and quantum-dot-quantum-well nanocrystals
    Stirner, T
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (14): : 6715 - 6720
  • [5] Core-shell quantum dots: Properties and applications
    Vasudevan, D.
    Gaddam, Rohit Ranganathan
    Trinchi, Adrian
    Cole, Ivan
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 636 : 395 - 404
  • [6] Preparation and Applications of Core-Shell Molecularly Imprinted Polymers
    Ming Weina
    Wang Xiaoyan
    Ming Yongfei
    Li Jinhua
    Chen Lingxin
    [J]. PROGRESS IN CHEMISTRY, 2016, 28 (04) : 552 - 563
  • [7] Synthesis of core-shell quantum-dot nanoparticles for radiodetection
    Jeong, Joa-young
    Paulenova, Alena
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [8] Optical nutation in GaAs/AlGaAs core-shell quantum dot
    Solanki, R.
    Seni, P.
    Sen, P. K.
    [J]. INTERNATIONAL CONFERENCE ON RECENT TRENDS IN PHYSICS (ICRTP 2014), 2014, 534
  • [9] Micromechanical analysis of quantum dot-embedded smart nanocomposite materials
    Alam, Arif
    Saha, Gobinda C.
    Kalamkarov, Alexander L.
    [J]. COMPOSITES PART C: OPEN ACCESS, 2020, 3
  • [10] Quantum dot-embedded microspheres for remote refractive index sensing
    Pang, Shuo
    Beckham, Richard E.
    Meissner, Kenith E.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (22)