The Challenge of Fetal Cardiac MRI Reconstruction Using Deep Learning

被引:1
|
作者
Prokopenko, Denis [1 ]
Hammernik, Kerstin [2 ,3 ]
Roberts, Thomas [1 ,4 ]
Lloyd, David F. A.
Rueckert, Daniel [2 ,3 ,5 ,6 ]
Hajnal, Joseph V. [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Biomed Engn, London, England
[2] Tech Univ Munich, Dept Informat, Munich, Germany
[3] Imperial Coll London, Dept Comp, London, England
[4] Guys & St Thomas NHS Fdn Trust, Clin Sci Comp, London, England
[5] Kings Coll London, Child Hlth, London, England
[6] Evelina London Childrens Hosp, Paediat & Fetal Cardiol, London, England
基金
英国工程与自然科学研究理事会;
关键词
Image Reconstruction; Fetal Cardiac MRI; Deep Learning; K-T BLAST; DYNAMIC MRI; SENSE;
D O I
10.1007/978-3-031-45544-5_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic free-breathing fetal cardiac MRI is one of the most challenging modalities, which requires high temporal and spatial resolution to depict rapid changes in a small fetal heart. The ability of deep learning methods to recover undersampled data could help to optimise the kt-SENSE acquisition strategy and improve non-gated kt-SENSE reconstruction quality. However, their application is limited by the lack of available fetal cardiac data. In this work, we explore supervised deep learning networks for reconstruction of kt-SENSE style acquired data using an extensive in vivo dataset. Having access to fully-sampled low-resolution multi-coil fetal cardiac MRI, we study the performance of the networks to recover fully-sampled data from undersampled data. We consider model architectures together with training strategies taking into account their application in the real clinical setup used to collect the dataset to enable networks to recover prospectively undersampled data. We explore a set of modifications to form a baseline performance evaluation for dynamic fetal cardiac MRI on real data. We systematically evaluate the models on coil-combined data to reveal the effect of the suggested changes to the architecture in the context of fetal heart properties. We show that the best-performing models recover a detailed depiction of the maternal anatomy on a large scale, but the dynamic properties of the fetal heart are under-represented. Training directly on multi-coil data improves the performance of the models, allows their prospective application to undersampled data and makes them outperform CTFNet introduced for adult cardiac cine MRI. However, these models deliver similar qualitative performances recovering the maternal body very well but underestimating the dynamic properties of fetal heart. This dynamic feature of fast change of fetal heart that is highly localised suggests both more targeted training and evaluation methods might be needed for fetal heart application.
引用
收藏
页码:64 / 74
页数:11
相关论文
共 50 条
  • [1] Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI
    Vollbrecht, Thomas M.
    Hart, Christopher
    Zhang, Shuo
    Katemann, Christoph
    Sprinkart, Alois M.
    Isaak, Alexander
    Attenberger, Ulrike
    Pieper, Claus C.
    Kuetting, Daniel
    Geipel, Annegret
    Strizek, Brigitte
    Luetkens, Julian A.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [2] Evaluation of late gadolinium enhancement cardiac MRI using deep learning reconstruction
    Yang, Jing
    Wang, Feng
    Wang, Zhirong
    Zhang, Wei
    Xie, Lizhi
    Wang, Lixin
    ACTA RADIOLOGICA, 2023, 64 (10) : 2714 - 2721
  • [3] Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction
    Sandino, Christopher M.
    Lai, Peng
    Vasanawala, Shreyas S.
    Cheng, Joseph Y.
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (01) : 166 - 181
  • [4] Deep Learning-Based Reconstruction for Cardiac MRI: A Review
    Oscanoa, Julio A.
    Middione, Matthew J.
    Alkan, Cagan
    Yurt, Mahmut
    Loecher, Michael
    Vasanawala, Shreyas S.
    Ennis, Daniel B.
    BIOENGINEERING-BASEL, 2023, 10 (03):
  • [5] Accelerated Cine Cardiac MRI Using Deep Learning-Based Reconstruction: A Systematic Evaluation
    Pednekar, Amol
    Kocaoglu, Murat
    Wang, Hui
    Tanimoto, Aki
    Tkach, Jean A.
    Lang, Sean
    Taylor, Michael D.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (02) : 640 - 650
  • [6] Deep Cardiac MRI Reconstruction with ADMM
    Yiasemis, George
    Moriakov, Nikita
    Sonke, Jan-Jakob
    Teuwen, Jonas
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. REGULAR AND CMRXRECON CHALLENGE PAPERS, STACOM 2023, 2024, 14507 : 479 - 490
  • [7] Accelerating MRI reconstruction with deep learning
    Lonning, K.
    Caan, M. W. A.
    Sonke, J.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S281 - S281
  • [8] Deep learning for undersampled MRI reconstruction
    Hyun, Chang Min
    Kim, Hwa Pyung
    Lee, Sung Min
    Lee, Sungchul
    Seo, Jin Keun
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (13):
  • [9] Interpretability of a Deep Learning Model in the Application of Cardiac MRI Segmentation with an ACDC Challenge Dataset
    Janik, Adrianna
    Dodd, Jonathan
    Ifrim, Georgiana
    Sankaran, Kris
    Curran, Kathleen
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [10] Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&Ms Challenge
    Martin-Isla, Carlos
    Campello, Victor M.
    Izquierdo, Cristian
    Kushibar, Kaisar
    Sendra-Balcells, Carla
    Gkontra, Polyxeni
    Sojoudi, Alireza
    Fulton, Mitchell J.
    Arega, Tewodros Weldebirhan
    Punithakumar, Kumaradevan
    Li, Lei
    Sun, Xiaowu
    Al Khalil, Yasmina
    Liu, Di
    Jabbar, Sana
    Queiros, Sandro
    Galati, Francesco
    Mazher, Moona
    Gao, Zheyao
    Beetz, Marcel
    Tautz, Lennart
    Galazis, Christoforos
    Varela, Marta
    Huellebrand, Markus
    Grau, Vicente
    Zhuang, Xiahai
    Puig, Domenec
    Zuluaga, Maria A.
    Mohy-ud-Din, Hassan
    Metaxas, Dimitris
    Breeuwer, Marcel
    van der Geest, Rob J.
    Noga, Michelle
    Bricq, Stephanie
    Rentschler, Mark E.
    Guala, Andrea
    Petersen, Steffen E.
    Escalera, Sergio
    Rodriguez Palomares, Jose F.
    Lekadir, Karim
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3302 - 3313