The sound of geological targets on Mars from the absolute intensity of laser-induced sparks shock waves

被引:1
|
作者
Alvarez-Llamas, C. [1 ]
Laserna, J. [1 ]
Moros, J. [1 ]
Purohit, P. [1 ]
Garcia-Gomez, L. [1 ]
Angel, S. M. [2 ]
Bernardi, P. [3 ]
Bousquet, B. [4 ]
Cadu, A. [5 ]
Dauson, E. [6 ]
Forni, O. [7 ]
Fouchet, T. [3 ]
Gasnault, O. [7 ]
Jacob, X. [8 ]
Lacombe, G. [7 ]
Lanza, N. L. [6 ]
Larmat, C. [6 ]
Lasue, J. [7 ]
Lorenz, R. D. [9 ]
Meslin, P. -Y. [7 ]
Mimoun, D. [5 ]
Montmessin, F. [10 ]
Murdoch, N. [5 ]
Ollila, A. M. [6 ]
Pilleri, P. [7 ]
Randazzo, N. [11 ]
Reyes-Newell, A. L. [6 ]
Schroeder, S. [12 ]
Stott, A. [5 ]
Ten Cate, J. [6 ]
Udry, A. [13 ]
Vogt, D. [12 ]
Clegg, S. [6 ]
Cousin, A. [7 ]
Maurice, S. [7 ]
Wiens, R. C. [14 ]
机构
[1] Univ Malaga, Dept Quim Analit, Malaga, Spain
[2] Univ South Carolina, Dept Chem & Biochem, Columbia, SC USA
[3] Univ Paris Cite, Sorbonne Univ, Lab Etud Spatiales & Instrumentat Astrophys, Observ Paris PSL,CNRS, Meudon, France
[4] Univ Bordeaux, Ctr Lasers Intenses & Applicat, CNRS, CEA, Bordeaux, France
[5] Univ Toulouse, Inst Super Aeronaut & Espace ISAE SUPAERO, SAE SUPAERO, Toulouse, France
[6] Los Alamos Natl Lab, Los Alamos, NM USA
[7] Univ Toulouse 3 Paul Sabatier, Inst Rech Astrophys & Planetol IRAP, CNRS, CNES,UPS, Toulouse, France
[8] Univ Toulouse 3 Paul Sabatier, Inst Mecan Fluides, Inst Natl Polytech Toulouse, Toulouse, France
[9] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[10] Sorbonne Univ, Univ St Quentin En Yvelines, Univ Paris Saclay, Lab Atmospheres,Milieux,Observ Spatiales,CNRS, Guyancourt, France
[11] Univ Alberta, Edmonton, AB, Canada
[12] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Opt Sensor Syst, Berlin, Germany
[13] Univ Nevada, Las Vegas, NV USA
[14] Purdue Univ, Earth Atmospher & Planetary Sci, W Lafayette, IN USA
关键词
Acoustics; Mars; Perseverance; Jezero; LIBS; Geological material; INDUCED BREAKDOWN SPECTROSCOPY; CHEMCAM INSTRUMENT SUITE; UNIT;
D O I
10.1016/j.sab.2023.106687
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Inspection of geological material is one of the main goals of the Perseverance rover during its journey across the landscape of the Jezero crater in Mars. NASA's rover integrates SuperCam, an instrument capable of performing standoff characterization of samples using a variety of techniques. Among those tools, SuperCam can perform laser-induced breakdown spectroscopy (LIBS) studies to elucidate the chemical composition of the targets of interest. Data from optical spectroscopy can be supplemented by simultaneously-produced laser-produced plasma acoustics in order to expand the information acquired from the probed rocks thanks to the SuperCam's microphone (MIC) as it can be synchronized with the LIBS laser. Herein, we report cover results from LIBS and MIC during Perseverance's first 380 sols on the Martian surface. We study the correlation between both recorded signals, considering the main intrasample and environmental sources of variation for each technique, to understand their behavior and how they can be interpreted together towards complimenting LIBS with acoustics. We find that louder and more stable acoustic signals are recorded from rock with compact surfaces, i.e., low presence loose particulate material, and harder mineral phases in their composition. Reported results constitute the first description of the evolution of the intensity in the time domain of shockwaves from laser-produced plasmas on geological targets recorded in Mars. These signals are expected contain physicochemical signatures pertaining to the inspected sampling positions. As the dependence of the acoustic signal recorded on the sample composition, provided by LIBS, is unveiled, the sound from sparks become a powerful tool for the identification of mineral phases with similar optical emission spectra.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Recording laser-induced sparks on Mars with the SuperCam microphone
    Chide, Baptiste
    Maurice, Sylvestre
    Cousin, Agnes
    Bousquet, Bruno
    Mimoun, David
    Beyssac, Olivier
    Meslin, Pierre-Yves
    Wiens, Roger C.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 174
  • [2] Shock Waves in Laser-Induced Plasmas
    Campanella, Beatrice
    Legnaioli, Stefano
    Pagnotta, Stefano
    Poggialini, Francesco
    Palleschi, Vincenzo
    ATOMS, 2019, 7 (02):
  • [3] Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes
    Marti-Lopez, L.
    Ocana, R.
    Porro, J. A.
    Morales, M.
    Ocana, J. L.
    APPLIED OPTICS, 2009, 48 (19) : 3671 - 3680
  • [4] LASER-INDUCED SHOCK-WAVES IN LIQUIDS
    EMMONY, DC
    SIEGRIST, M
    KNEUBUHL, FK
    APPLIED PHYSICS LETTERS, 1976, 29 (09) : 547 - 549
  • [5] LASER-INDUCED SHOCK-WAVES IN LIQUIDS
    SIEGRIST, M
    KNEUBUHL, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1976, 27 (04): : 517 - 519
  • [6] Ultrafast measurement of laser-induced shock waves
    Lokar, Ziga
    Horvat, Darja
    Petelin, Jaka
    Petkovsek, Rok
    PHOTOACOUSTICS, 2023, 30
  • [7] Effects of laser-induced shock waves on metals
    Zhang, YK
    Cai, L
    PROGRESS IN NATURAL SCIENCE, 1996, 6 : S428 - S431
  • [8] Propagation of laser-induced shock waves in the atmosphere
    Krasnenko, N. P.
    Shamanaev, S. V.
    Shamanaeva, L. G.
    14TH INTERNATIONAL SYMPOSIUM FOR THE ADVANCEMENT OF BOUNDARY LAYER REMOTE SENSING, 2008, 1
  • [9] Heating in ultraintense laser-induced shock waves
    Eliezer, Shalom
    Pinhasi, Shirly Vinikman
    Martinez Val, Jose Maria
    Raicher, Erez
    Henis, Zohar
    LASER AND PARTICLE BEAMS, 2017, 35 (02) : 304 - 312
  • [10] Study of the Parameters of Laser-Induced Shock Waves for Laser Shock Peening of Silicon
    E. I. Mareev
    B. V. Rumiantsev
    F. V. Potemkin
    JETP Letters, 2020, 112 : 739 - 744