Developing a metabolic clearance rate framework as a translational analysis approach for hyperpolarized 13C magnetic resonance imaging

被引:1
|
作者
Grist, James T. [1 ,2 ,3 ,4 ]
Bogh, Nikolaj [5 ]
Hansen, Esben Sovso [5 ]
Schneider, Anna M. [6 ]
Healicon, Richard [1 ]
Ball, Vicky [1 ]
Miller, Jack J. J. J. [1 ,2 ,5 ]
Smart, Sean [7 ]
Couch, Yvonne [6 ]
Buchan, Alastair M. [6 ]
Tyler, Damian J. [1 ,2 ]
Laustsen, Christoffer [5 ,8 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford, England
[2] Oxford Ctr Clin Magnet Resonance Res, Div Cardiovasc Med, Oxford, England
[3] Oxford Univ Hosp Trust, Dept Radiol, Oxford, England
[4] Univ Birmingham, Inst Canc & Genom Sci, Birmingham, England
[5] Aarhus Univ, MR Res Ctr, Dept Clin Med, Aarhus, Denmark
[6] Univ Oxford, Radcliffe Dept Med, Oxford, England
[7] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford, England
[8] Aarhus Univ Hosp, MR Ctr, Palle Juul Jensens Blvd 99, DK-8200 Aarhus N, Denmark
关键词
MRI; BLOOD; MODEL; QUANTIFICATION; FLOW; NITROGEN-13-AMMONIA; VALIDATION; PYRUVATE; REVEALS; BOLUS;
D O I
10.1038/s41598-023-28643-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T-1, transmit B-1, and k(PL). A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 +/- 2 vs 89 +/- 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 +/- 12 vs 95 +/- 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 +/- 5 vs 4 +/- 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 +/- 0.007 vs 0.017 +/- 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 +/- 8 vs 60 +/- 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Developing a metabolic clearance rate framework as a translational analysis approach for hyperpolarized 13C magnetic resonance imaging
    James T. Grist
    Nikolaj Bøgh
    Esben Søvsø Hansen
    Anna M. Schneider
    Richard Healicon
    Vicky Ball
    Jack J. J. J. Miller
    Sean Smart
    Yvonne Couch
    Alastair M. Buchan
    Damian J. Tyler
    Christoffer Laustsen
    Scientific Reports, 13
  • [2] Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging
    Kubala, Eugen
    Munoz-Alvarez, Kim A.
    Topping, Geoffrey
    Hundshammer, Christian
    Feuerecker, Benedikt
    Gomez, Pedro A.
    Pariani, Giorgio
    Schilling, Franz
    Glaser, Steffen J.
    Schulte, Rolf F.
    Menzel, Marion I.
    Schwaiger, Markus
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (118): : 1 - 16
  • [3] Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis
    Golman, Klaes
    in't Zandt, Rene
    Lerche, Mathilde
    Pehrson, Rikard
    Ardenkjaer-Larsen, Jan Henrik
    CANCER RESEARCH, 2006, 66 (22) : 10855 - 10860
  • [4] Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors
    Park, Ilwoo
    Larson, Peder E. Z.
    Zierhut, Matthew L.
    Hu, Simon
    Bok, Robert
    Ozawa, Tomoko
    Kurhanewicz, John
    Vigneron, Daniel B.
    VandenBerg, Scott R.
    James, C. David
    Nelson, Sarah J.
    NEURO-ONCOLOGY, 2010, 12 (02) : 133 - 144
  • [5] DNP-hyperpolarized 13C magnetic resonance metabolic imaging for cancer applications
    Nelson, S. J.
    Vigneron, D.
    Kurhanewicz, J.
    Chen, A.
    Bok, R.
    Hurd, R.
    APPLIED MAGNETIC RESONANCE, 2008, 34 (3-4) : 533 - 544
  • [6] DNP-Hyperpolarized 13C Magnetic Resonance Metabolic Imaging for Cancer Applications
    S. J. Nelson
    D. Vigneron
    J. Kurhanewicz
    A. Chen
    R. Bok
    R. Hurd
    Applied Magnetic Resonance, 2008, 34 : 533 - 544
  • [7] Biomedical applications of hyperpolarized 13C magnetic resonance imaging
    Gallagher, F. A.
    Kettunen, M. I.
    Brindle, K. M.
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2009, 55 (04) : 285 - 295
  • [8] Tumor Imaging Using Hyperpolarized 13C Magnetic Resonance
    Brindle, Kevin M.
    Bohndiek, Sarah E.
    Gallagher, Ferdia A.
    Kettunen, Mikko I.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (02) : 505 - 519
  • [9] Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging
    Park, Jae Mo
    Recht, Lawrence D.
    Josan, Sonal
    Merchant, Milton
    Jang, Taichang
    Yen, Yi-Fen
    Hurd, Ralph E.
    Spielman, Daniel M.
    Mayer, Dirk
    NEURO-ONCOLOGY, 2013, 15 (04) : 433 - 441
  • [10] Metabolic imaging and other applications of hyperpolarized 13C
    Golman, Klaes
    Petersson, J. Stefan
    ACADEMIC RADIOLOGY, 2006, 13 (08) : 932 - 942