Optimal regional control for a class of semilinear time-fractional diffusion systems with distributed feedback

被引:0
|
作者
Ge, Fudong [1 ]
Chen, YangQuan [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Univ Calif Merced, Dept Mech Engn, MESA Lab, Merced, CA 95343 USA
基金
中国国家自然科学基金;
关键词
Fractional calculus; Optimal regional control; Semilinear time-fractional diffusion systems; Duality theory; Feedback control; EQUATIONS; CONTROLLABILITY;
D O I
10.1007/s13540-023-00128-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal regional control problem for a class of semilinear time-fractional diffusion systems with distributed feedback in a bounded domain is solved in the paper. For this purpose, we first discuss the well-posedness of the considered system and the differentiability of the control-to-state mapping. The existence of optimal controls for the studied optimal regional control problem is then proved. By using fractional-order system's duality theory to generalize the Hilbert uniqueness method, we present an approach on exploring the explicit expression of the optimal control formulae for associated optimal regional control problems. Moreover, to make the controllers implementation simpler and more precise, a particular case when the distributed controller is a kind of Sakawa-type is also investigated. Finally, we present a numerical example to illustrate the efficiency of our proposed approach.
引用
收藏
页码:651 / 671
页数:21
相关论文
共 50 条