The Reidemeister spectrum of 2-step nilpotent groups determined by graphs

被引:3
|
作者
Dekimpe, Karel [1 ]
Lathouwers, Maarten [1 ]
机构
[1] KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
关键词
Nilpotent group; R-infinity-property; Reidemeister number; right-angled Artin group; twisted conjugacy; TWISTED CONJUGACY CLASSES;
D O I
10.1080/00927872.2022.2160455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the Reidemeister spectrum of finitely generated torsion-free 2-step nilpotent groups associated to graphs. We develop three methods, based on the structure of the graph, that can be used to determine the Reidemeister spectrum of the associated group in terms of the Reidemeister spectra of groups associated to smaller graphs. We illustrate our methods for several families of graphs, including all the groups associated to a graph with at most four vertices. We also apply our results in the context of topological fixed point theory for nilmanifolds.
引用
收藏
页码:2384 / 2407
页数:24
相关论文
共 50 条
  • [1] Clones of 2-step nilpotent groups
    Kearnes, Keith A.
    Shaw, Jason
    Szendrei, Agnes
    ALGEBRA UNIVERSALIS, 2008, 59 (3-4) : 491 - 512
  • [2] Clones of 2-step nilpotent groups
    Keith A. Kearnes
    Jason Shaw
    Ágnes Szendrei
    Algebra universalis, 2008, 59 : 491 - 512
  • [3] The Reidemeister spectrum of direct products of nilpotent groups
    Senden, Pieter
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 519 - 547
  • [4] On the asymptotics of the growth of 2-step nilpotent groups
    Stoll, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 38 - 48
  • [5] C*-superrigidity of 2-step nilpotent groups
    Eckhardt, Caleb
    Raum, Sven
    ADVANCES IN MATHEMATICS, 2018, 338 : 175 - 195
  • [6] Conjugate points on 2-step nilpotent groups
    Jang, CR
    Park, K
    GEOMETRIAE DEDICATA, 2000, 79 (01) : 65 - 80
  • [7] Conjugate Points on 2-Step Nilpotent Groups
    Changrim Jang
    Keun Park
    Geometriae Dedicata, 2000, 79 : 65 - 80
  • [8] Graphs and metric 2-step nilpotent Lie algebras
    DeCoste, Rachelle C.
    DeMeyer, Lisa
    Mainkar, Meera G.
    ADVANCES IN GEOMETRY, 2018, 18 (03) : 265 - 284
  • [9] ISOMETRY GROUPS OF PSEUDORIEMANNIAN 2-STEP NILPOTENT LIE GROUPS
    Cordero, Luis A.
    Parker, Phillip E.
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (01): : 49 - 72
  • [10] 2-step nilpotent Lie groups of higher rank
    Samiou, E
    MANUSCRIPTA MATHEMATICA, 2002, 107 (01) : 101 - 110