Duality results in terms of convexifactors for a bilevel multiobjective optimization problem

被引:0
|
作者
Saini, Shivani [1 ]
Kailey, Navdeep [1 ]
机构
[1] Thapar Inst Engn & Technol, Sch Math, Patiala 147004, India
关键词
Bilevel programming; Multiobjective programming; psi-function; Convexifactor; Duality; OPTIMALITY CONDITIONS; GENERALIZED CONVEXITY;
D O I
10.2298/FIL2406015S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we have formulated a Wolfe type dual for a multiobjective bilevel programming problem, which involves vector-valued objective function in the upper level and single objective function in the lower level. Under generalized convexity assumptions, on the functions involved weak and strong duality theorems are derived. Some examples are given to illustrate the applicability of the obtained results.
引用
收藏
页码:2015 / 2022
页数:8
相关论文
共 50 条
  • [1] Optimality and Duality Results for Bilevel Programming Problem Using Convexifactors
    Suneja, S. K.
    Kohli, B.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (01) : 1 - 19
  • [2] Optimality and Duality Results for Bilevel Programming Problem Using Convexifactors
    S. K. Suneja
    B. Kohli
    [J]. Journal of Optimization Theory and Applications, 2011, 150 : 1 - 19
  • [3] Sufficient optimality conditions and duality results for a bilevel multiobjective optimization problem via a ψ reformulation
    Gadhi, N.
    Hamdaoui, K.
    El Idrissi, M.
    [J]. OPTIMIZATION, 2020, 69 (04) : 681 - 702
  • [4] Duality for multiobjective fractional programming problem using convexifactors
    Suneja S.K.
    Kohli B.
    [J]. Mathematical Sciences, 2013, 7 (1)
  • [5] Optimality conditions using convexifactors for a multiobjective fractional bilevel programming problem
    Kohli, Bhawna
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (01): : 21 - 41
  • [6] Optimality conditions in terms of convexificators for a bilevel multiobjective optimization problem
    Dempe, S.
    Gadhi, N.
    El Idrissi, M.
    [J]. OPTIMIZATION, 2020, 69 (7-8) : 1811 - 1830
  • [7] Optimality conditions and duality in terms of convexificators for multiobjective bilevel programming problem with equilibrium constraints
    Tran Van Su
    Dinh Dieu Hang
    Nguyen Cong Dieu
    [J]. Computational and Applied Mathematics, 2021, 40
  • [8] Optimality conditions and duality in terms of convexificators for multiobjective bilevel programming problem with equilibrium constraints
    Tran Van Su
    Dinh Dieu Hang
    Nguyen Cong Dieu
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (02):
  • [9] A note on optimality conditions in terms of convexificators for a bilevel multiobjective optimization problem
    Dempe, Stephan
    Gadhi, Nazih Abderrazzak
    [J]. OPTIMIZATION, 2023,
  • [10] Bilevel optimization with a multiobjective problem in the lower level
    Andreani, Roberto
    Ramirez, Viviana A.
    Santos, Sandra A.
    Secchin, Leonardo D.
    [J]. NUMERICAL ALGORITHMS, 2019, 81 (03) : 915 - 946