GZKP: A GPU Accelerated Zero-Knowledge Proof System

被引:10
|
作者
Ma, Weiliang [1 ]
Xiong, Qian [1 ]
Shi, Xuanhua [1 ]
Ma, Xiaosong [2 ]
Jin, Hai [1 ]
Kuang, Haozhao [1 ]
Gao, Mingyu [3 ]
Zhang, Ye [4 ]
Shen, Haichen [4 ]
Hu, Weifang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Big Data Technol & Syst, Serv Comp Technol & Syst Lab, Sch Comp Sci & Technol,Cluster & Grid Comp Lab, Wuhan, Hubei, Peoples R China
[2] Hamad Bin Khalifa Univ, Doha, Qatar
[3] Tsinghua Univ, Beijing, Peoples R China
[4] Scroll Fdn, Victoria, Beau Vallon, Seychelles
基金
国家重点研发计划;
关键词
zero-knowledge proof; GPU acceleration;
D O I
10.1145/3575693.3575711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-knowledge proof (ZKP) is a cryptographic protocol that allows one party to prove the correctness of a statement to another party without revealing any information beyond the correctness of the statement itself. It guarantees computation integrity and confidentiality, and is therefore increasingly adopted in industry for a variety of privacy-preserving applications, such as verifiable outsource computing and digital currency. A significant obstacle in using ZKP for online applications is the performance overhead of its proof generation. We develop GZKP, a GPU accelerated zero-knowledge proof system that supports different levels of security requirements and brings significant speedup toward making ZKP truly usable. For polynomial computation over a large finite field, GZKP promotes a cache-friendly memory access pattern while eliminating the costly external shuffle in existing solutions. For multi-scalar multiplication, GZKP adopts a new parallelization strategy, which aggressively combines integer elliptic curve point operations and exploits fine-grained task parallelism with load balancing for sparse integer distribution. GZKP outperforms the state-of-the-art ZKP systems by an order of magnitude, achieving up to 48.1x and 17.6x speedup with standard cryptographic benchmarks and a real-world application workload, respectively.
引用
收藏
页码:340 / 353
页数:14
相关论文
共 50 条
  • [1] Attack against a batch zero-knowledge proof system
    Peng, K.
    IET INFORMATION SECURITY, 2012, 6 (01) : 1 - 5
  • [2] A Zero-Knowledge Proof System with Algebraic Geometry Techniques
    Gonzalez Fernandez, Edgar
    Morales-Luna, Guillermo
    Sagols, Feliu
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [3] ZERO-KNOWLEDGE PROOF SYSTEMS FOR QMA
    Broadbent, Anne
    Ji, Zhengfeng
    Song, Fang
    Watrous, John
    SIAM JOURNAL ON COMPUTING, 2020, 49 (02) : 245 - 283
  • [4] Physical Zero-Knowledge Proof for Sukoro
    Sasaki, Shun
    Shinagawa, Kazumasa
    NEW GENERATION COMPUTING, 2024, 42 (03) : 381 - 398
  • [5] ON THE COMPOSITION OF ZERO-KNOWLEDGE PROOF SYSTEMS
    GOLDREICH, O
    KRAWCZYK, H
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 : 268 - 282
  • [6] Zero-Knowledge Proof Authentication Protocols
    Ratseev, S. M.
    Rostov, M. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2019, 19 (01): : 114 - 121
  • [7] On the composition of zero-knowledge proof systems
    Goldreich, O
    Krawczyk, H
    SIAM JOURNAL ON COMPUTING, 1996, 25 (01) : 169 - 192
  • [8] A Survey on Zero-Knowledge Proof in Blockchain
    Sun, Xiaoqiang
    Yu, F. Richard
    Zhang, Peng
    Sun, Zhiwei
    Xie, Weixin
    Peng, Xiang
    IEEE NETWORK, 2021, 35 (04): : 198 - 205
  • [9] Physical Zero-Knowledge Proof for Makaro
    Bultel, Xavier
    Dreier, Jannik
    Dumas, Jean-Guillaume
    Lafourcade, Pascal
    Miyahara, Daiki
    Mizuki, Takaaki
    Nagao, Atsuki
    Sasaki, Tatsuya
    Shinagawa, Kazumasa
    Sone, Hideaki
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, SSS 2018, 2018, 11201 : 111 - 125
  • [10] Optimized CPU-GPU collaborative acceleration of zero-knowledge proof for confidential transactions
    Huang, Ying
    Zheng, Xiaoying
    Zhu, Yongxin
    JOURNAL OF SYSTEMS ARCHITECTURE, 2023, 135