Interplay between thermal and magnetic properties of polymer nanocomposites with superparamagnetic Fe3O4 nanoparticles

被引:3
|
作者
Rahman, Md Rezoanur [1 ]
Bake, Abdulhakim [1 ]
Ahmed, Al Jumlat [1 ]
Islam, Sheik Md Kazi Nazrul [1 ]
Wu, Liang [2 ,3 ]
Khakbaz, Hadis [2 ,3 ]
FitzGerald, Sara [4 ]
Chalifour, Artek [5 ,6 ]
Livesey, Karen L. [5 ,6 ,7 ]
Knott, Jonathan C. [1 ]
Innis, Peter C. [2 ,3 ]
Beirne, Stephen [2 ,3 ]
Cortie, David [1 ,8 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, North Wollongong, NSW 2519, Australia
[2] Univ Wollongong, ARC Ctr Excellence Electromat Sci, North Wollongong, NSW 2519, Australia
[3] Univ Wollongong, Intelligent Polymer Res Inst, North Wollongong, NSW 2519, Australia
[4] Univ South Carolina, SmartState Ctr Expt Nanoscale Phys, Dept Phys & Astron, Columbia, SC 29208 USA
[5] Univ Colorado, Biofrontiers Ctr, Colorado Springs, CO 80918 USA
[6] Univ Colorado, Dept Phys, Colorado Springs, CO 80918 USA
[7] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
[8] Australian Nucl Sci & Technol Org, Menai, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Nanoparticles; Nanocomposite; Superparamagnetic iron oxide; Hyperthermia; Responsive plastics; Targeted heating; Thermally conductive composites; COMPOSITE NANOPARTICLES; HYPERTHERMIA; TOXICITY;
D O I
10.1016/j.jmmm.2023.170859
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic nanoparticles embedded in polymer matrices have excellent potential for multifunctional applications like magnetic remote heating, controlled drug delivery, hyperthermia, and thermally functionalized biomedical devices. A solvent-based processing method was developed to produce magnetic composites consisting of magnetite (Fe3O4) superparamagnetic nanoparticles embedded in a biomedical-grade polyurethane (Chrono-Flex(R) C). The particles had a log-normal size distribution spanning from 4-16 nm, with a mean-size of 9.5 +/- 2 nm. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy with elemental mapping were used to assess the phase purity, surface morphology, particle size, and homogeneity of the resulting nanocomposite. The magnetic properties of composites with 7-13 wt% of Fe3O4 were studied between 5 and 300 K using vibrating sample magnetometry. Room temperature magnetic attraction was observed, with a saturation magnetization of up to 5 emu/g and a low coercive field (Hc < 50 Oe), where the non-zero coercive field was attributed to a small fraction of larger particles that are ferromagnetic at room temperature. Field-cooled and zero-field-cooled magnetometry data were fitted to a numerical model to determine the super-paramagnetic mean blocking temperature (TB = 90 K) of the embedded magnetite particles, and an effective magnetic anisotropy of 6 x 105 erg/cm3. Using an AC magnetic field operating at 85 kHz, we demonstrate that remote heating of the base polyurethane material is greatly enhanced by compositing with Fe3O4 nanoparticles, leading to temperatures up to 45 degrees C within 18 min for composites submerged in water. This work demonstrates the fundamental principles of a custom-designed thermomagnetic polymer composite that could be used in applications, including medical and heat management.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions
    Gas, J
    Poddar, P
    Almand, J
    Srinath, S
    Srikanth, H
    ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (01) : 71 - 75
  • [2] Effect of Carbon Shell on the Structural and Magnetic Properties of Fe3O4 Superparamagnetic Nanoparticles
    A. Jafari
    K. Boustani
    S. Farjami Shayesteh
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 187 - 194
  • [3] Effect of Carbon Shell on the Structural and Magnetic Properties of Fe3O4 Superparamagnetic Nanoparticles
    Jafari, A.
    Boustani, K.
    Shayesteh, S. Farjami
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (01) : 187 - 194
  • [4] The Interplay between Fe3O4 Superparamagnetic Nanoparticles, Sodium Butyrate, and Folic Acid for Intracellular Transport
    Cambria, Maria Teresa
    Villaggio, Giusy
    Laudani, Samuele
    Pulvirenti, Luca
    Federico, Concetta
    Saccone, Salvatore
    Condorelli, Guglielmo Guido
    Sinatra, Fulvia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (22) : 1 - 15
  • [5] Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging
    Liu Tianhui
    Chang Gang
    Cao Ruijun
    Meng Lingjie
    PROGRESS IN CHEMISTRY, 2015, 27 (05) : 601 - 613
  • [6] Influence of Fe3O4 nanoparticles decoration on dye adsorption and magnetic separation properties of Fe3O4/rGO nanocomposites
    Minitha, Cherukutty Ramakrishnan
    Arachy, Muthiah Martina Susan
    Kumar, Ramasamy Thangavelu Rajendra
    SEPARATION SCIENCE AND TECHNOLOGY, 2018, 53 (14) : 2159 - 2169
  • [7] Study on the Synthesis and Properties of Superparamagnetic Monodisperse Fe3O4 Nanoparticles
    Jiang Wen
    Wen Xian-Tao
    Wang Wei
    Wu Yao
    Gu Zhong-Wei
    JOURNAL OF INORGANIC MATERIALS, 2009, 24 (04) : 727 - 731
  • [8] Study of Structural and Magnetic Properties of Superparamagnetic Fe3O4–ZnO Core–Shell Nanoparticles
    Alireza Ahadpour Shal
    Atefeh Jafari
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 1531 - 1538
  • [9] Microwave dielectric and magnetic properties of superparamagnetic 8-nm Fe3O4 nanoparticles
    Wen, Fusheng
    Zhang, Fang
    Zheng, Hong
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (16) : 2471 - 2475
  • [10] Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites
    Abbas Mohammadi
    Mehdi Barikani
    Mohammad Barmar
    Journal of Materials Science, 2013, 48 : 7493 - 7502