Fatigue and anisotropic behavior of wire-arc additive manufactured TC17 titanium alloy

被引:7
|
作者
Yu, Banglong [1 ]
Chen, Zhihao [2 ]
Wang, Ping [3 ]
Liu, Yong [3 ]
Song, Xiaoguo [1 ,4 ]
Dong, Pingsha [5 ]
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Civil Engn, Harbin 150001, Peoples R China
[3] Harbin Inst Technol Weihai, Sch Ocean Engn, Weihai 264209, Peoples R China
[4] Shandong Inst Shipbldg Technol, Weihai 264209, Peoples R China
[5] Univ Michigan, Dept Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
来源
基金
中国国家自然科学基金;
关键词
Wire arc additive manufacturing; Titanium alloy; Tensile property; Low cycle fatigue; Anisotropy; CYCLE FATIGUE; MECHANICAL-PROPERTIES; VARIANT SELECTION; ALPHA-PHASE; TI-6AL-4V; STRAIN; MICROSTRUCTURE; TEXTURE; LASER; BETA;
D O I
10.1016/j.jmrt.2023.12.214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire-arc additive manufacturing (WAAM) was used in aeronautical engineering due to its low equipment cost and ability to create complex shapes. However, the fatigue behavior of WAAM titanium alloy, specifically for low cycle fatigue (LCF), was poorly studied. This paper investigated the microstructure and mechanical behavior of WAAM TC17 in both vertical and horizontal orientations. Fully reversed LCF tests were conducted on specimens with varying strain amplitudes from +/- 0.4 % to +/- 1.2 %. The results found that the ultimate tensile and yield strength were similar for both vertical and horizontal samples, but the elongation in the horizontal orientation was approximately 60 % lower than that in the vertical orientation. Considering the cyclic loading behavior, both vertical and horizontal samples exhibited cyclic softening characteristics at high strain amplitudes (0.8%-1.2 %). Additionally, the cyclic softening rate (CSR) of horizontal samples exhibited a higher than that of vertical samples at high strain amplitude. The LCF cracks of WAAM TC17 were initiated from the surface and internal defects of the samples. The LCF performance of the horizontal samples was found to decrease than that of vertical samples. Specifically, the fatigue performance of the horizontal samples is lower by 36.7 % compared to the vertical samples when the number of cycles is 103.
引用
收藏
页码:3463 / 3474
页数:12
相关论文
共 50 条
  • [1] Wire feeding based laser additive manufacturing TC17 titanium alloy
    Liu, Q.
    Wang, Y.
    Zheng, H.
    Tang, K.
    Li, H.
    Gong, S.
    MATERIALS TECHNOLOGY, 2016, 31 (02) : 108 - 114
  • [2] Fatigue Crack Propagation Rate for TC17 Titanium Alloy
    Guo, Ping
    Zhang, Jingli
    Qiang, Fei
    Xin, Shewei
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2022, 51 (11): : 4358 - 4362
  • [3] Microstructure Formation and Mechanical Properties of a Wire-Arc Additive Manufactured Magnesium Alloy
    Klein, Thomas
    Arnoldt, Aurel
    Schnall, Martin
    Gneiger, Stefan
    JOM, 2021, 73 (04) : 1126 - 1134
  • [4] Microstructure Formation and Mechanical Properties of a Wire-Arc Additive Manufactured Magnesium Alloy
    Thomas Klein
    Aurel Arnoldt
    Martin Schnall
    Stefan Gneiger
    JOM, 2021, 73 : 1126 - 1134
  • [5] Fatigue Crack Propagation Rate for TC17 Titanium Alloy
    Guo Ping
    Zhang Jingli
    Qiang Fei
    Xin Shewei
    RARE METAL MATERIALS AND ENGINEERING, 2022, 51 (11) : 4358 - 4362
  • [6] Effect of laser additive repair on high cycle fatigue properties of TC17 titanium alloy
    Wang, Lingfeng
    Luo, Sihai
    Lu, Kainan
    Zhang, Xuan
    Zhao, Zhenhua
    Liu, Ping
    Yi, Min
    Zhou, Liucheng
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 178
  • [7] Criticality of porosity defects on the fatigue performance of wire plus arc additive manufactured titanium alloy
    Biswal, Romali
    Zhang, Xiang
    Syed, Abdul Khadar
    Awd, Mustafa
    Ding, Jialuo
    Walther, Frank
    Williams, Stewart
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 122 : 208 - 217
  • [8] Tensile and fatigue behavior of electron beam welded TC17 titanium alloy joint
    Liu, Hanqing
    Wang, Haomin
    Zhang, Zhen
    Liu, Yongjie
    Huang, Zhiyong
    Wang, Qingyuan
    Chen, Qiang
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 128
  • [9] Effects of thermal undercooling and thermal cycles on the grain and microstructure evolution of TC17 titanium alloy repaired by wire arc additive manufacturing
    Zhuo, Yimin
    Yang, Chunli
    Fan, Chenglei
    Lin, Sanbao
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 124 (09): : 3161 - 3169
  • [10] Effects of trace Sn and Cr addition on microstructure and mechanical properties of TC17 titanium alloy repaired by wire arc additive manufacturing
    Zhuo, Yimin
    Yang, Chunli
    Fan, Chenglei
    Lin, Sanbao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888