Electrochemical hydrogenation of levulinic acid, furfural and 5-hydroxymethylfurfural

被引:19
|
作者
Zhang, Yunfei [1 ]
Shen, Yi [1 ,2 ]
机构
[1] South China Univ Technol, Sch Food Sci & Engn, Guangzhou 510640, Peoples R China
[2] China Singapore Int Joint Res Inst, Guangzhou 510663, Peoples R China
关键词
Levulinic acid; Furfural; 5-hydroxymethylfurfural; Electrocatalysis; Hydrogenation; ELECTROCATALYTIC HYDROGENATION; GAMMA-VALEROLACTONE; CATALYTIC CONVERSION; BIOMASS VALORIZATION; EFFICIENT PRODUCTION; REDUCTIVE AMINATION; FURANIC COMPOUNDS; PARTIAL OXIDATION; HIGH SELECTIVITY; ALCOHOL;
D O I
10.1016/j.apcatb.2023.123576
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Platform molecules from lignocellulosic biomass, such as levulinic acid (LA), furfural (FF), and 5-hydroxymethylfurfural (HMF), hold great potentials as precursors to various fuels and high-value compounds through catalytic hydrogenation. However, the existing thermochemical conversions of these carbonyl-containing short-chain organics such as thermal catalytic hydrogenation involve energy-intensive and expensive processes. Electrocatalytic hydrogenation (ECH) emerges as an environmentally friendly, cost-effective, and safe process. The ECH of these organics can contribute to mitigating fossil-energy dependencies, fostering sustainable energy production, and yielding socio-economic benefits. ECH of these organics are thus intriguing, but there is a need to objectively evaluate this field. This review summarizes the product outcomes and critical reaction parameters (e. g., electrode materials, temperatures, electrolyte compositions) associated with ECH of LA, FF, and HMF. Emphasis is placed on the mechanisms related to the varying substrates. Special attention was paid to the correlations of catalytic performance with catalyst structures. After a thorough literature survey, strategies for catalyst design are discussed to enhance selectivity by promoting desired product formation and suppressing competing reactions. Moreover, current challenges, unresolved issues, and future perspectives on ECH of LA, FF, and HMF are proposed. It is expected that this work will afford useful information on the synthesis of electrocatalysts for electrochemical conversions of biomass.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Levulinic Acid as a Catalyst for the Production of 5-Hydroxymethylfurfural and Furfural from Lignocellulose Biomass
    Seemala, Bhogeswararao
    Haritos, Victoria
    Tanksale, Akshat
    CHEMCATCHEM, 2016, 8 (03) : 640 - 647
  • [2] Multiscale Modeling of (Hemi)cellulose Hydrolysis and Cascade Hydrotreatment of 5-Hydroxymethylfurfural, Furfural, and Levulinic Acid
    Sivec, Rok
    Grilc, Miha
    Hus, Matej
    Likozar, Blaz
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (35) : 16018 - 16032
  • [3] Supported Metal Catalysts for Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural
    Nakagawa, Yoshinao
    Tamura, Masazumi
    Tomishige, Keiichi
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2017, 60 (01) : 1 - 9
  • [4] A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid
    Girisuta, B.
    Janssen, L. P. B. M.
    Heeres, H. J.
    GREEN CHEMISTRY, 2006, 8 (08) : 701 - 709
  • [5] Advances on the catalytic hydrogenation of biomass-derived furfural and 5-hydroxymethylfurfural
    Zhang J.
    Li D.-N.
    Yuan H.-R.
    Wang S.-R.
    Chen Y.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2021, 49 (12): : 1752 - 1767
  • [6] FLUOROMETRIC MEASUREMENT OF FURFURAL AND 5-HYDROXYMETHYLFURFURAL
    WALMSLEY, TA
    LEVER, M
    ANALYTICAL BIOCHEMISTRY, 1982, 124 (02) : 446 - 451
  • [7] Review on catalysts and catalytic processes for double bond hydrogenation of furfural and 5-hydroxymethylfurfural
    Li P.-Y.
    Zhao Q.
    Wang Y.-J.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2021, 35 (02): : 206 - 214
  • [8] Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars
    Gupta, Dinesh
    Ahmad, Ejaz
    Pant, Kamal K.
    Saha, Basudeb
    RSC ADVANCES, 2017, 7 (67) : 41973 - 41979
  • [9] ANTHOCYANIN DEGRADATION IN THE PRESENCE OF FURFURAL AND 5-HYDROXYMETHYLFURFURAL
    DEBICKIPOSPISIL, J
    LOVRIC, T
    TRINAJSTIC, N
    SABLJIC, A
    JOURNAL OF FOOD SCIENCE, 1983, 48 (02) : 411 - 416
  • [10] Kinetic Study of Glucose Conversion to 5-hydroxymethylfurfural and Levulinic Acid Catalyzed by Sulfuric Acid
    Han, Seokjun
    Lee, Seung Min
    Kim, Jun Seok
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2022, 60 (02): : 193 - 201