HPFG: semi-supervised medical image segmentation framework based on hybrid pseudo-label and feature-guiding

被引:0
|
作者
Li, Feixiang [1 ]
Jiang, Ailian [1 ]
Li, Mengyang [1 ]
Xiao, Cimei [1 ]
Ji, Wei [1 ]
机构
[1] Taiyuan Univ Technol, Coll Comp Sci & Technol, Jinzhong 030600, Shanxi, Peoples R China
关键词
Medical images; Semi-supervised medical image segmentation; Pseudo-label; Contrastive learning;
D O I
10.1007/s11517-023-02946-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-supervised learning methods have been attracting much attention in medical image segmentation due to the lack of high-quality annotation. To cope with the noise problem of pseudo-label in semi-supervised medical image segmentation and the limitations of contrastive learning applications, we propose a semi-supervised medical image segmentation framework, HPFG, based on hybrid pseudo-label and feature-guiding, which consists of a hybrid pseudo-label strategy and two different feature-guiding modules. The hybrid pseudo-label strategy uses the CutMix operation and an auxiliary network to enable the labeled images to guide the unlabeled images to generate high-quality pseudo-label and reduce the impact of pseudo-label noise. In addition, a feature-guiding encoder module based on feature-level contrastive learning is designed to guide the encoder to mine useful local and global image features, thus effectively enhancing the feature extraction capability of the model. At the same time, a feature-guiding decoder module based on adaptive class-level contrastive learning is designed to guide the decoder in better extracting class information, achieving intra-class affinity and inter-class separation, and effectively alleviating the class imbalance problem in medical datasets. Extensive experimental results show that the segmentation performance of the HPFG framework proposed in this paper outperforms existing semi-supervised medical image segmentation methods on three public datasets: ACDC, LIDC, and ISIC. Code is available at https://github.com/fakerlove1/HPFG.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 50 条
  • [1] HPFG: semi-supervised medical image segmentation framework based on hybrid pseudo-label and feature-guiding
    Feixiang Li
    Ailian Jiang
    Mengyang Li
    Cimei Xiao
    Wei Ji
    Medical & Biological Engineering & Computing, 2024, 62 : 405 - 421
  • [2] Pseudo-label Guided Contrastive Learning for Semi-supervised Medical Image Segmentation
    Basak, Hritam
    Yin, Zhaozheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19786 - 19797
  • [3] Uncertainty-aware pseudo-label and consistency for semi-supervised medical image segmentation
    Lu, Liyun
    Yin, Mengxiao
    Fu, Liyao
    Yang, Feng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [4] Federated Semi-Supervised Learning for Medical Image Segmentation via Pseudo-Label Denoising
    Qiu, Liang
    Cheng, Jierong
    Gao, Huxin
    Xiong, Wei
    Ren, Hongliang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4672 - 4683
  • [5] Semi-supervised medical imaging segmentation with soft pseudo-label fusion
    Xiaoqiang Li
    Yuanchen Wu
    Songmin Dai
    Applied Intelligence, 2023, 53 : 20753 - 20765
  • [6] Semi-supervised medical imaging segmentation with soft pseudo-label fusion
    Li, Xiaoqiang
    Wu, Yuanchen
    Dai, Songmin
    APPLIED INTELLIGENCE, 2023, 53 (18) : 20753 - 20765
  • [7] Pseudo-label Alignment for Semi-supervised Instance Segmentation
    Hu, Jie
    Chen, Chen
    Cao, Liujuan
    Zhang, Shengchuan
    Shu, Annan
    Jiang, Guannan
    Ji, Rongrong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16291 - 16301
  • [8] Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation
    Chaitanya, Krishna
    Erdil, Ertunc
    Karani, Neerav
    Konukoglu, Ender
    MEDICAL IMAGE ANALYSIS, 2023, 87
  • [9] Pseudo-label guided selective mutual learning for semi-supervised 3D medical image segmentation
    Hang, Wenlong
    Dai, Peng
    Pan, Chengao
    Liang, Shuang
    Zhang, Qingfeng
    Wu, Qiang
    Jin, Yukun
    Wang, Qiong
    Qin, Jing
    Biomedical Signal Processing and Control, 2025, 100
  • [10] Pseudo-label based semi-supervised learning in the distributed machine learning framework
    王晓曦
    WU Wenjun
    YANG Feng
    SI Pengbo
    ZHANG Xuanyi
    ZHANG Yanhua
    High Technology Letters, 2022, 28 (02) : 172 - 180