Camouflaged Object Detection with Feature Grafting and Distractor Aware

被引:6
|
作者
Song, Yuxuan [1 ]
Li, Xinyue [1 ]
Qi, Lin [1 ]
机构
[1] Ocean Univ China, Coll Comp Sci & Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Camouflaged Object Detection; Transformer; Convolutional Neural Networks; Distractor;
D O I
10.1109/ICME55011.2023.00419
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of Camouflaged Object Detection (COD) aims to accurately segment camouflaged objects that integrated into the environment, which is more challenging than ordinary detection as the texture between the target and background is visually indistinguishable. In this paper, we proposed a novel Feature Grafting and Distractor Aware network (FDNet) to handle the COD task. Specifically, we use CNN and Transformer to encode multi-scale images in parallel. In order to better explore the advantages of the two encoders, we design a cross-attentionbased Feature Grafting Module to graft features extracted from Transformer branch into CNN branch, after which the features are aggregated in the Feature Fusion Module. A Distractor Aware Module is designed to explicitly model the two possible distractor in the COD task to refine the coarse camouflage map. We also proposed the largest artificial camouflaged object dataset which contains 2000 images with annotations, named ACOD2K. We conducted extensive experiments on four widely used benchmark datasets and the ACOD2K dataset. The results show that our method significantly outperforms other state-of-the-art methods. The code and the ACOD2K will be available at https://github.com/syxvision/FDNet.
引用
收藏
页码:2459 / 2464
页数:6
相关论文
共 50 条
  • [1] Frequency-aware Camouflaged Object Detection
    Lin, Jiaying
    Tan, Xin
    Xu, Ke
    Ma, Lizhuang
    Lau, Rynsonw. H.
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [2] OAFormer: Occlusion Aware Transformer for Camouflaged Object Detection
    Yang, Xin
    Zhu, Hengliang
    Mao, Guojun
    Xing, Shuli
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1421 - 1426
  • [3] Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
    Li, Aixuan
    Zhang, Jing
    Lv, Yunqiu
    Liu, Bowen
    Zhang, Tong
    Dai, Yuchao
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10066 - 10076
  • [4] Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction
    He, Chunming
    Li, Kai
    Zhang, Yachao
    Tang, Longxiang
    Zhang, Yulun
    Guo, Zhenhua
    Li, Xiu
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22046 - 22055
  • [5] Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers
    Huang, Zhou
    Dai, Hang
    Xiang, Tian-Zhu
    Wang, Shuo
    Chen, Huai-Xin
    Qin, Jie
    Xiong, Huan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5557 - 5566
  • [6] Feature Aggregation and Propagation Network for Camouflaged Object Detection
    Zhou, Tao
    Zhou, Yi
    Gong, Chen
    Yang, Jian
    Zhang, Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7036 - 7047
  • [7] Camouflaged Object Detection with a Feature Lateral Connection Network
    Wang, Tao
    Wang, Jian
    Wang, Ruihao
    ELECTRONICS, 2023, 12 (12)
  • [8] Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers
    Huang, Zhou
    Dai, Hang
    Xiang, Tian-Zhu
    Wang, Shuo
    Chen, Huai-Xin
    Qin, Jie
    Xiong, Huan
    Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2023, 2023-June : 5557 - 5566
  • [9] Edge-Aware Mirror Network for Camouflaged Object Detection
    Sun, Dongyue
    Jiang, Shiyao
    Qi, Lin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2465 - 2470
  • [10] Discriminative context-aware network for camouflaged object detection
    Ike, Chidiebere Somadina
    Muhammad, Nazeer
    Bibi, Nargis
    Alhazmi, Samah
    Eoghan, Furey
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7