Local Discriminative Embedding Broad Learning System With Graph Convolutional for Hyperspectral Image Classification

被引:0
|
作者
Li, Wei [1 ]
Shi, Yuanquan [1 ]
Li, Liyun [1 ]
Ma, Xiangbo [2 ]
机构
[1] Huaihua Univ, Coll Comp & Artificial Intelligence, Huaihua 418000, Hunan, Peoples R China
[2] Beijing Wanweisheng New Technol Co Ltd, Beijing 102200, Peoples R China
基金
中国国家自然科学基金;
关键词
Broad learning systems; hyperspectral image; local geometric structure; graph convolutional; SEMISUPERVISED CLASSIFICATION; DIMENSIONALITY REDUCTION;
D O I
10.1109/ACCESS.2023.3305382
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Broad learning system has attracted increasing attention in the hyperspectral image (HSI) classification, due to its universal approximation capability and high efficiency. However, two main challenges remained. One is that the mapping from the original BLS input to the mapped feature (MF) is linear, which is difficult to fully represent the complex spatial-spectral features of HSI. The other is that BLS fails to explore the local geometric structure relationship between samples within HSI. To overcome the limitations mentioned above, we propose a local discriminative embedding broad learning system with graph convolutional (GDEBLS). To address the first challenge, GDEBLS utilizes the graph convolution operation to aggregate the node information in the adjacent graph to learn the context and obtain the rich nonlinear spatial-spectral features in HSI. To deal with the second challenge, our method utilizes a neighborhood selection approach based on manifold structure to calculate the true distances between samples in the manifold space, overcoming the limitations of Euclidean distance measurement. Next, We introduce local manifold structure and discriminative information into BLS. The experimental results show that the proposed method significantly surpasses other state-of-the-art methods.
引用
收藏
页码:91879 / 91890
页数:12
相关论文
共 50 条
  • [1] Graph Convolutional Enhanced Discriminative Broad Learning System for Hyperspectral Image Classification
    Tuya
    IEEE ACCESS, 2022, 10 : 90299 - 90311
  • [2] Local sensitive discriminative broad learning system for hyperspectral image classification
    Cao, Heling
    Song, Changlong
    Chu, Yonghe
    Zhao, Chenyang
    Deng, Miaolei
    Liu, Guangen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [3] Global-local manifold embedding broad graph convolutional network for hyperspectral image classification
    Cao, Heling
    Cao, Jun
    Chu, Yonghe
    Wang, Yun
    Liu, Guangen
    Li, Peng
    NEUROCOMPUTING, 2024, 602
  • [4] Robust discriminative broad learning system for hyperspectral image classification
    ZHAO Liguo
    HAN Zhe
    LUO Yong
    Optoelectronics Letters, 2022, (07) : 444 - 448
  • [5] Robust discriminative broad learning system for hyperspectral image classification
    Liguo Zhao
    Zhe Han
    Yong Luo
    Optoelectronics Letters, 2022, 18 : 444 - 448
  • [6] Hyperspectral image classification with discriminative manifold broad learning system
    Chu, Yonghe
    Lin, Hongfei
    Yang, Liang
    Sun, Shichang
    Diao, Yufeng
    Min, Changrong
    Fan, Xiaochao
    Shen, Chen
    NEUROCOMPUTING, 2021, 442 : 236 - 248
  • [7] Hyperspectral image classification with discriminative manifold broad learning system
    Chu, Yonghe
    Lin, Hongfei
    Yang, Liang
    Sun, Shichang
    Diao, Yufeng
    Min, Changrong
    Fan, Xiaochao
    Shen, Chen
    Neurocomputing, 2021, 442 : 236 - 248
  • [8] Robust discriminative broad learning system for hyperspectral image classification
    Zhao Liguo
    Han Zhe
    Luo Yong
    OPTOELECTRONICS LETTERS, 2022, 18 (07) : 444 - 448
  • [9] Global-local graph convolutional broad network for hyperspectral image classification
    Chu, Yonghe
    Cao, Jun
    Huang, Jiashuang
    Ju, Hengrong
    Liu, Guangen
    Cao, Heling
    Ding, Weiping
    Applied Soft Computing, 2025, 170
  • [10] Semisupervised Classification of Hyperspectral Image Based on Graph Convolutional Broad Network
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2995 - 3005