Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models

被引:0
|
作者
Zahidi, Youssra [1 ]
Al-Amrani, Yassine [2 ]
El Younoussi, Yacine [1 ]
机构
[1] Abdelmalek Essaadi Univ, Informat Syst & Software Engn Lab, Tetouan, Morocco
[2] Abdelmalek Essaadi Univ, Informat Technol & Modeling Syst TIMS Res Team, Tetouan, Morocco
关键词
Arabic sentiment analysis (ASA); deep learning (DL); long short-term memory (LSTM); word embedding; FastText and Word2Vec;
D O I
10.1142/S2196888823500069
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent times, online users freely express their sentiments in different life aspects because of the huge increase in social networks. Sentiment Analysis (SA) is one of the main Natural Language Processing (NLP) fields thanks to its important role in identifying sentiment polarities and making decisions from the public's opinions. The Arabic language is one of the most challenging languages for SA due to its various dialects, and morphological and syntactic complexities. Deep Learning (DL) models have shown significant capabilities, especially in SA. In particular, Long Short-Term Memory (LSTM) networks have proven perfect abilities to learn sequential data. This paper proposes a comparative study result of Word2Vec and FastText word embedding models that are used to create two Arabic SA (ASA) LSTM-based approaches. The experimental results confirm that the LSTM model with FastText can significantly ameliorate the Arabic classification accuracy.
引用
收藏
页码:391 / 407
页数:17
相关论文
共 50 条
  • [1] Chinese Sentiment Analysis Using Bidirectional LSTM with Word Embedding
    Xiao, Zheng
    Liang, Pijun
    [J]. CLOUD COMPUTING AND SECURITY, ICCCS 2016, PT II, 2016, 10040 : 601 - 610
  • [2] Improving Sentiment Analysis in Arabic Using Word Representation
    Alayba, Abdulaziz M.
    Palade, Vasile
    England, Matthew
    Iqbal, Rahat
    [J]. 2018 IEEE 2ND INTERNATIONAL WORKSHOP ON ARABIC AND DERIVED SCRIPT ANALYSIS AND RECOGNITION (ASAR), 2018, : 13 - 18
  • [3] Exploring Word Embedding for Arabic Sentiment Analysis
    Gayed, Sana
    Mallat, Souheyl
    Zrigui, Mounir
    [J]. RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 92 - 101
  • [4] Analysis of Sentiment on Movie Reviews Using Word Embedding Self-Attentive LSTM
    Sivakumar, Soubraylu
    Rajalakshmi, Ratnavel
    [J]. INTERNATIONAL JOURNAL OF AMBIENT COMPUTING AND INTELLIGENCE, 2021, 12 (02) : 33 - 52
  • [5] A Comparative Analysis of Word Embedding and Deep Learning for Arabic Sentiment Classification
    Sabbeh, Sahar F.
    Fasihuddin, Heba A.
    [J]. ELECTRONICS, 2023, 12 (06)
  • [6] Attention-based Spatialized Word Embedding Bi-LSTM Model for Sentiment Analysis
    Zhu, Kun
    Samsudin, Nur Hana
    [J]. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2024, 32 (01): : 79 - 98
  • [7] Improving the Polarity of Text through word2vec Embedding for Primary Classical Arabic Sentiment Analysis
    Nour Elhouda Aoumeur
    Zhiyong Li
    Eissa M. Alshari
    [J]. Neural Processing Letters, 2023, 55 : 2249 - 2264
  • [8] Improving the Polarity of Text through word2vec Embedding for Primary Classical Arabic Sentiment Analysis
    Aoumeur, Nour Elhouda
    Li, Zhiyong
    Alshari, Eissa M. M.
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (03) : 2249 - 2264
  • [9] Improving Arabic information retrieval using word embedding similarities
    El Mahdaouy, Abdelkader
    El Alaoui, Said Ouatik
    Gaussier, Eric
    [J]. INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2018, 21 (01) : 121 - 136
  • [10] Sentiment Analysis with Word Embedding
    Deho, Oscar B.
    Agangiba, William A.
    Aryeh, Felix L.
    Ansah, Jeffery A.
    [J]. 2018 IEEE 7TH INTERNATIONAL CONFERENCE ON ADAPTIVE SCIENCE & TECHNOLOGY (IEEE ICAST), 2018,