Promotion effects of thermal oxidation on zeolitic imidazolate framework-8 (ZIF-8) for efficient broad-spectrum photocatalysis

被引:3
|
作者
Yu, Xinning [1 ]
Xu, Dejun [1 ]
Jiang, Xintong [1 ]
Zhang, Jun [1 ]
Ni, Zhangsong [1 ]
Wang, Mao [1 ]
机构
[1] Chengdu Fluid Dynam Innovat Ctr, Chengdu 610071, Sichuan, Peoples R China
关键词
ZIF-8; Thermal oxidation; Broad-spectrum photocatalyst; Reaction kinetics; METAL-ORGANIC FRAMEWORKS; METHYLENE-BLUE; DYE DEGRADATION; NANO-PARTICLES; PERFORMANCE; ADSORPTION; CARBON; PHOTODEGRADATION; COMPOSITES; CATALYST;
D O I
10.1016/j.molstruc.2023.135861
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of photocatalysts with broad-spectrum response and efficient electron transfer yet remains a great challenge. Herein, we report a systematic research on the thermal oxidation mechanism of ZIF-8 and its promotion effects on photocatalytic performance. The activation energy E of organic ligands decomposition during ZIF-8 thermal oxidation was calculated to be 103.7 kJ/mol by Kissinger-Akahira-Sunose (KAS) model. The wurtzite ZnO crystal and oxidizing functional groups (H-N-C=O, C-O, etc.) formed in oxidized ZIF-8 were crucial to the superior photocatalytic performance. In particular, O350/ZIF-8 had the broadest optical absorption band (similar to 750 nm) and largest photocurrent density, which exhibited the highest photocatalytic activity of methylene blue (MB) with rate constant k of 0.0374 min(-1). The photogenerated O-center dot(2)- and (OH)-O-center dot radicals were found to react as main oxygen species in photocatalytic reaction. Taken together, this study not only offered a simple method to prepare ZIF-8 based photocatalyst with high activity and stability, but also provided guidance for the efficient photocatalytic degradation of organic compounds in wastewater.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8)
    Chin, Michael
    Cisneros, Cecilia
    Araiza, Stephanie M.
    Vargas, Kevin M.
    Ishihara, Kristi M.
    Tian, Fangyuan
    RSC ADVANCES, 2018, 8 (47) : 26987 - 26997
  • [2] Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review
    Simin Feng
    Xiaoli Zhang
    Dunyun Shi
    Zheng Wang
    Frontiers of Chemical Science and Engineering, 2021, 15 : 221 - 237
  • [3] Bio-template synthesis of zeolitic imidazolate framework-8 (ZIF-8)
    Wang, Qi
    Qin, Hongmin
    Zhou, Hongcai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [4] Zeolitic imidazolate framework-8(ZIF-8) for drug delivery:a critical review
    Simin Feng
    Xiaoli Zhang
    Dunyun Shi
    Zheng Wang
    Frontiers of Chemical Science and Engineering, 2021, 15 (02) : 221 - 237
  • [5] Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes for Kr/Xe Separation
    Wu, Ting
    Feng, Xuhui
    Eisaidi, Sameh K.
    Thallapally, Praveen K.
    Carreon, Moises A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (06) : 1682 - 1686
  • [6] Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review
    Feng, Simin
    Zhang, Xiaoli
    Shi, Dunyun
    Wang, Zheng
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (02) : 221 - 237
  • [7] Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system
    Pan, Yichang
    Liu, Yunyang
    Zeng, Gaofeng
    Zhao, Lan
    Lai, Zhiping
    CHEMICAL COMMUNICATIONS, 2011, 47 (07) : 2071 - 2073
  • [8] Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review
    Hoseinpour, Vahid
    Shariatinia, Zahra
    TISSUE & CELL, 2021, 72
  • [9] Broadband optical nonlinearity of zeolitic imidazolate framework-8 (ZIF-8) for ultrafast photonics
    Dong, Li
    Chu, Hongwei
    Li, Ying
    Zhao, Shengzhi
    Li, Dechun
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (28) : 8912 - 8919
  • [10] Thermosensitive Structural Changes and Adsorption Properties of Zeolitic Imidazolate Framework-8 (ZIF-8)
    Lee, Taehee
    Kim, Hyungmin
    Cho, Woosuk
    Han, Doug-Young
    Ridwan, Muhammad
    Yoon, Chang Won
    Lee, Jong Suk
    Choi, Nakwon
    Ha, Kyoung-Su
    Yip, Alex C. K.
    Choi, Jungkyu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (15): : 8226 - 8237