Deterministic nanoantenna array design for stable plasmon-enhanced harmonic generation

被引:5
|
作者
Jeong, Tae-In [5 ]
Oh, Dong Kyo [1 ]
Kim, San [5 ]
Park, Jongkyoon [5 ]
Kim, Yeseul [1 ]
Mun, Jungho [1 ]
Kim, Kyujung [5 ,6 ]
Chew, Soo Hoon [5 ,6 ]
Rho, Junsuk [1 ,2 ,3 ,4 ]
Kim, Seungchul [5 ,6 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
[3] POSCO POSTECH RIST Convergence Res Ctr Flat Opt &, Pohang 37673, South Korea
[4] Natl Inst Nanomat Technol NINT, Pohang 37673, South Korea
[5] Pusan Natl Univ, Coll Nanosci & Nanotechnol, Dept Cognomechatron Engn, Busan 46241, South Korea
[6] Pusan Natl Univ, Coll Nanosci & Nanotechnol, Dept Opt & Mechatron Engn, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
nanophotonics; nonlinear optics; plasmonic field enhancement; third-harmonic generation; 3RD-HARMONIC GENERATION; NONLINEAR RESPONSE; FIELD;
D O I
10.1515/nanoph-2022-0365
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonic nanoantennas have been extensively explored to boost nonlinear optical processes due to their capabilities to confine optical fields on the nanoscale. In harmonic generation, nanoantenna array architectures are often employed to increase the number of emitters in order to efficiently enhance the harmonic emission. A small laser focus spot on the nanoantenna array maximizes the harmonic yield since it scales nonlinearly with the incident laser intensity. However, the nonlinear yield of the nanoantennas lying at the boundary of a focused beam may exhibit significant deviations in comparison to those at the center of the beam due to the Gaussian intensity distribution of the beam. This spatial beam inhomogeneity can cause power instability of the emitted harmonics when the lateral beam position is not stable which we observed in plasmon-enhanced third-harmonic generation (THG). Hence, we propose a method for deterministically designing the density of a nanoantenna array to decrease the instability of the beam position-dependent THG yield. This method is based on reducing the ratio between the number of ambiguous nanoantennas located at the beam boundary and the total number of nanoantennas within the beam diameter to increase the plasmon-enhanced THG stability, which we term as the ratio of ambiguity (ROA). We find that the coefficient of variation of the measured plasmonic THG yield enhancement decreases with the ROA. Thus, our method is beneficial for designing reliable sensors or nonlinear optical devices consisting of nanoantenna arrays for enhancing output signals.
引用
收藏
页码:619 / 629
页数:11
相关论文
共 50 条
  • [1] Surface Plasmon-Enhanced Nanoantenna for Localized Fluorescence
    Kocakarin, Isa
    Yegin, Korkut
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2012, 2012
  • [2] Plasmon-enhanced second harmonic generation of metal nanostructures
    Zhang, Cong-Cong
    Zhang, Jia-Yi
    Feng, Jing-Ru
    Liu, Si-Ting
    Ding, Si-Jing
    Ma, Liang
    Wang, Qu-Quan
    NANOSCALE, 2024, 16 (12) : 5960 - 5975
  • [3] Plasmon-enhanced high-harmonic generation from silicon
    Vampa, G.
    Ghamsari, B. G.
    Mousavi, S. Siadat
    Hammond, T. J.
    Olivieri, A.
    Lisicka-Skrek, E.
    Naumov, A. Yu
    Villeneuve, D. M.
    Staudte, A.
    Berini, P.
    Corkum, P. B.
    NATURE PHYSICS, 2017, 13 (07) : 659 - +
  • [4] Plasmon-enhanced high-harmonic generation from silicon
    Vampa G.
    Ghamsari B.G.
    Siadat Mousavi S.
    Hammond T.J.
    Olivieri A.
    Lisicka-Skrek E.
    Naumov A.Y.
    Villeneuve D.M.
    Staudte A.
    Berini P.
    Corkum P.B.
    Nature Physics, 2017, 13 (7) : 659 - 662
  • [5] Plasmon-Enhanced Second Harmonic Sensing
    Ghirardini, Lavinia
    Baudrion, Anne-Laure
    Monticelli, Marco
    Petti, Daniela
    Biagioni, Paolo
    Duo, Lamberto
    Pellegrini, Giovanni
    Adam, Pierre-Michel
    Finazzi, Marco
    Celebrano, Michele
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (21): : 11475 - 11481
  • [6] Surface plasmon-enhanced transverse magnetic second-harmonic generation
    Zheng, Wei
    Hanbicki, Aubrey T.
    Jonker, Berry T.
    Luepke, Gunter
    OPTICS EXPRESS, 2013, 21 (23): : 28842 - 28848
  • [7] Germanium Nanoantennas for Plasmon-Enhanced Third Harmonic Generation in the Mid Infrared
    Fischer, Marco P.
    Riede, Aaron
    Grupp, Alexander
    Gallacher, Kevin
    Frigerio, Jacopo
    Pellegrini, Giovanni
    Ortolani, Michele
    Paul, Douglas J.
    Isella, Giovanni
    Leitenstorfer, Alfred
    Biagioni, Paolo
    Brida, Daniele
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [8] Plasmon-Enhanced Second-Harmonic Generation Nanorulers with Ultrahigh Sensitivities
    Shen, Shaoxin
    Meng, Lingyan
    Zhang, Yuejiao
    Han, Junbo
    Ma, Zongwei
    Hu, Shu
    He, Yuhan
    Li, Jianfeng
    Ren, Bin
    Shih, Tien-Mo
    Wang, Zhaohui
    Yang, Zhilin
    Tian, Zhongqun
    NANO LETTERS, 2015, 15 (10) : 6716 - 6721
  • [9] Plasmon-Enhanced Ultrasensitive Surface Analysis Using Ag Nanoantenna
    Li, Chao-Yu
    Gao, Jin-Hong
    Yi, Jun
    Zhang, Xia-Guang
    Cao, Xiao-Dan
    Meng, Meng
    Wang, Chen
    Huang, Ya-Ping
    Zhang, San-Jun
    Wu, De-Yin
    Wu, Chuan-Liu
    Xu, Jian-Hua
    Tian, Zhong-Qun
    Li, Jian-Feng
    ANALYTICAL CHEMISTRY, 2018, 90 (03) : 2018 - 2022
  • [10] Plasmon-Enhanced Circular Polarization High-Harmonic Generation from Silicon
    Ren, Sheng
    Chen, Danni
    Wang, Shiqi
    Chen, Yongqiang
    Hu, Rui
    Qu, Junle
    Liu, Liwei
    ADVANCED OPTICAL MATERIALS, 2024, 12 (31):