Machine learning approach using 18F-FDG-PET-radiomic features and the visibility of right ventricle 18F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis
被引:2
|
作者:
Nakajo, Masatoyo
论文数: 0引用数: 0
h-index: 0
机构:
Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Nakajo, Masatoyo
[1
]
Hirahara, Daisuke
论文数: 0引用数: 0
h-index: 0
机构:
Harada Acad, Dept Management Planning Div, 2-54-4 Higashitaniyama, Kagoshima 8900113, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Hirahara, Daisuke
[2
]
Jinguji, Megumi
论文数: 0引用数: 0
h-index: 0
机构:
Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Jinguji, Megumi
[1
]
Ojima, Satoko
论文数: 0引用数: 0
h-index: 0
机构:
Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Cardiovasc Med & Hypertens, 8-35-1 Sakuragaoka, Kagoshima 8908544, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Ojima, Satoko
[3
]
Hirahara, Mitsuho
论文数: 0引用数: 0
h-index: 0
机构:
Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Hirahara, Mitsuho
[1
]
Tani, Atsushi
论文数: 0引用数: 0
h-index: 0
机构:
Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Tani, Atsushi
[1
]
论文数: 引用数:
h-index:
机构:
Takumi, Koji
[1
]
论文数: 引用数:
h-index:
机构:
Kamimura, Kiyohisa
[1
]
Ohishi, Mitsuru
论文数: 0引用数: 0
h-index: 0
机构:
Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Cardiovasc Med & Hypertens, 8-35-1 Sakuragaoka, Kagoshima 8908544, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Ohishi, Mitsuru
[3
]
Yoshiura, Takashi
论文数: 0引用数: 0
h-index: 0
机构:
Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, JapanKagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Yoshiura, Takashi
[1
]
机构:
[1] Kagoshima Univ, Grad Sch Med & Dent Sci, Dept Radiol, 8-35-1 Sakuragaoka, Kagoshima 8908544, Japan
Objectives To investigate the usefulness of machine learning (ML) models using pretreatment F-18-FDG-PET-based radiomic features for predicting adverse clinical events (ACEs) in patients with cardiac sarcoidosis (CS). Materials and methods This retrospective study included 47 patients with CS who underwent F-18-FDG-PET/CT scan before treatment. The lesions were assigned to the training (n = 38) and testing (n = 9) cohorts. In total, 49 F-18-FDG-PET-based radiomic features and the visibility of right ventricle F-18-FDG uptake were used to predict ACEs using seven different ML algorithms (namely, decision tree, random forest [RF], neural network, k-nearest neighbors, Naive Bayes, logistic regression, and support vector machine [SVM]) with tenfold cross-validation and the synthetic minority over-sampling technique. The ML models were constructed using the top four features ranked by the decrease in Gini impurity. The AUCs and accuracies were used to compare predictive performances. Results Patients who developed ACEs presented with a significantly higher surface area and gray level run length matrix run length non-uniformity (GLRLM_RLNU), and lower neighborhood gray-tone difference matrix_coarseness and sphericity than those without ACEs (each, p < 0.05). In the training cohort, all seven ML algorithms had a good classification performance with AUC values of > 0.80 (range: 0.841-0.944). In the testing cohort, the RF algorithm had the highest AUC and accuracy (88.9% [8/9]) with a similar classification performance between training and testing cohorts (AUC: 0.945 vs 0.889). GLRLM_RLNU was the most important feature of the modeling process of this RF algorithm. Conclusion ML analyses using F-18-FDG-PET-based radiomic features may be useful for predicting ACEs in patients with CS.
机构:
Washington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USAWashington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USA
Crandall, John P.
Fraum, Tyler J.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USAWashington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USA
Fraum, Tyler J.
Lee, MinYoung
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USAWashington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USA
Lee, MinYoung
Jiang, Linda
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USAWashington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USA
Jiang, Linda
Grigsby, Perry
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Radiat Oncol, St Louis, MO 63110 USAWashington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USA
Grigsby, Perry
Wahl, Richard L.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USA
Washington Univ, Dept Radiat Oncol, St Louis, MO 63110 USAWashington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd,Campus Box 8131, St Louis, MO 63110 USA