Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox

被引:33
|
作者
Koonin, Eugene V. [2 ]
Gootenberg, Jonathan S. [1 ]
Abudayyeh, Omar O. [1 ]
机构
[1] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[2] Natl Ctr Biotechnol Informat, Natl Lib Med, NIH, Bethesda, MD 20894 USA
基金
美国国家卫生研究院;
关键词
ALTERED PAM SPECIFICITIES; RNA-GUIDED ENDONUCLEASE; NUCLEIC-ACID DETECTION; IN-VIVO; STRUCTURAL BASIS; EVOLUTIONARY CLASSIFICATION; DETECTION PLATFORM; PROTEIN CLEAVAGE; TARGETING RANGE; DENGUE VIRUS;
D O I
10.1021/acs.biochem.3c00159
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPRsystems mediate adaptive immunity in bacteria and archaeathrough diverse effector mechanisms and have been repurposed for versatileapplications in therapeutics and diagnostics thanks to their facilereprogramming with RNA guides. RNA-guided CRISPR-Cas targeting andinterference are mediated by effectors that are either componentsof multisubunit complexes in class 1 systems or multidomain single-effectorproteins in class 2. The compact class 2 CRISPR systems have beenbroadly adopted for multiple applications, especially genome editing,leading to a transformation of the molecular biology and biotechnologytoolkit. The diversity of class 2 effector enzymes, initially limitedto the Cas9 nuclease, was substantially expanded via computationalgenome and metagenome mining to include numerous variants of Cas12and Cas13, providing substrates for the development of versatile,orthogonal molecular tools. Characterization of these diverse CRISPReffectors uncovered many new features, including distinct protospaceradjacent motifs (PAMs) that expand the targeting space, improved editingspecificity, RNA rather than DNA targeting, smaller crRNAs, staggeredand blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage,etc. These unique properties enabled multiple applications, such asharnessing the promiscuous RNase activity of the type VI effector,Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systemshave been adopted for genome editing, as well, despite the challengeof expressing and delivering the multiprotein class 1 effectors. Therich diversity of CRISPR enzymes led to rapid maturation of the genomeediting toolbox, with capabilities such as gene knockout, base editing,prime editing, gene insertion, DNA imaging, epigenetic modulation,transcriptional modulation, and RNA editing. Combined with rationaldesign and engineering of the effector proteins and associated RNAs,the natural diversity of CRISPR and related bacterial RNA-guided systemsprovides a vast resource for expanding the repertoire of tools formolecular biology and biotechnology.
引用
收藏
页码:3465 / 3487
页数:23
相关论文
共 50 条
  • [1] Comprehensive Genome Engineering Toolbox for Microalgae Nannochloropsis oceanica Based on CRISPR-Cas Systems
    Naduthodi, Mihris Ibnu Saleem
    Sudfeld, Christian
    Avitzigiannis, Emmanouil Klimis
    Trevisan, Nicola
    van Lith, Eduard
    Sancho, Javier Alcaide
    D'Adamo, Sarah
    Barbosa, Maria
    van der Oost, John
    ACS SYNTHETIC BIOLOGY, 2021, 10 (12): : 3369 - 3378
  • [2] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [3] CRISPR-Cas systems for genome engineering and investigation Introduction
    Concordet, Jean Paul
    Giovannangeli, Carine
    METHODS, 2017, 121 : 1 - 2
  • [4] Therapeutic genome engineering via CRISPR-Cas systems
    Moreno, Ana M.
    Mali, Prashant
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2017, 9 (04)
  • [5] Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems
    Aquino-Jarquin, Guillermo
    DRUG DISCOVERY TODAY, 2023, 28 (11)
  • [6] Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    DiCarlo, James E.
    Norville, Julie E.
    Mali, Prashant
    Rios, Xavier
    Aach, John
    Church, George M.
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07) : 4336 - 4343
  • [7] Class 1 CRISPR-Cas systems: Genome engineering and silencing
    Klein N.
    Rust S.
    Randau L.
    BIOspektrum, 2022, 28 (4) : 370 - 373
  • [8] Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
    Shmakov, Sergey
    Abudayyeh, Omar O.
    Makarova, Kira S.
    Wolf, Yuri I.
    Gootenberg, Jonathan S.
    Semenova, Ekaterina
    Minakhin, Leonid
    Joung, Julia
    Konermann, Silvana
    Severinov, Konstantin
    Zhang, Feng
    Koonin, Eugene V.
    MOLECULAR CELL, 2015, 60 (03) : 385 - 397
  • [9] Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems
    Wada, Naoki
    Osakabe, Keishi
    Osakabe, Yuriko
    PLANT PHYSIOLOGY, 2022, 188 (04) : 1825 - 1837
  • [10] Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications
    Pyzocha, Neena K.
    Chen, Sidi
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 347 - 356