GLOBAL EXISTENCE AND OPTIMAL TIME DECAY FOR THE BAER-NUNZIATO MODEL IN THE Lp CRITICAL BESOV SPACE

被引:0
|
作者
Zhu, Limin
Cao, Hongmei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
The Baer-Nunziato model; Global existence; Optimal decay estimates; Critical Besov spaces; NAVIER-STOKES EQUATIONS; 2-PHASE FLOW MODEL; BLOW-UP CRITERION; GAS-LIQUID MODEL; WEAK SOLUTIONS; CONVERGENCE-RATES; WELL-POSEDNESS; INCOMPRESSIBLE LIMIT; ASYMPTOTIC-BEHAVIOR; SYSTEM;
D O I
10.3934/dcdsb.2024041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are devoted to the study of the compressible viscous Baer-Nunziato (BN) system in multi -dimensional spaces with d >= 2. Compared to previous findings, the (BN) system for compressible two-phase flows is led in two pressure state laws that vary with different phases. This property adds a practical physics background to this model. We will investigate the global existence of strong solutions to the Cauchy problem within the L-p critical regularity framework. Furthermore, we develop a Lyapunovtype energy argument that provides time-decay estimates of solutions without requiring additional smallness assumptions.
引用
收藏
页码:4228 / 4268
页数:41
相关论文
共 39 条
  • [1] GLOBAL EXISTENCE AND OPTIMAL TIME DECAY FOR THE VISCOUS LIQUID-GAS TWO-PHASE FLOW MODEL IN THE Lp CRITICAL BESOV SPACE
    Xu, Jiang
    Zhu, Limin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (09): : 5055 - 5086
  • [2] GLOBAL EXISTENCE AND OPTIMAL DECAY ESTIMATES OF THE COMPRESSIBLE VISCOELASTIC FLOWS IN LP CRITICAL SPACES
    Pan, Xinghong
    Xu, Jiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (04) : 2021 - 2057
  • [3] GLOBAL EXISTENCE AND OPTIMAL DECAY RATE OF SOLUTIONS TO HYPERBOLIC CHEMOTAXIS SYSTEM IN BESOV SPACES
    Wu, Xing
    Su, Keqin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (12): : 6057 - 6068
  • [4] Global existence for the two-dimensional Euler equations in a critical Besov space
    Qu, Kun
    Zhang, Yue
    ADVANCED MATERIALS AND INFORMATION TECHNOLOGY PROCESSING, PTS 1-3, 2011, 271-273 : 791 - 796
  • [5] Global existence and optimal time-decay estimates of solutions to the generalized double dispersion equation on the framework of Besov spaces
    Wang, Yuzhu
    Xu, Jiang
    Kawashima, Shuichi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (01)
  • [6] Global Existence in the Critical Space for the Space-Time Monopole Equations
    Hyungjin Huh
    Jihyun Yim
    Journal of Nonlinear Mathematical Physics, 31 (1)
  • [7] The optimal time-decay estimate of solutions to two-fluid Euler-Maxwell equations in the critical Besov space
    Wu, Limiao
    Shi, Weixuan
    Xu, Jiang
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [8] Global existence and time decay of the relativistic BGK equation in the whole space
    Liu, Zhengrong
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [9] Global existence and optimal decay rate to the compressible FENE dumbbell model
    Luo, Zhaonan
    Luo, Wei
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 404 : 130 - 181
  • [10] Well-posedness and time-decay for compressible viscoelastic fluids in critical Besov space
    Jia, Junxiong
    Peng, Jigen
    Mei, Zhandong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (02) : 638 - 675