Liouville theorems of solutions to mixed order Henon-Hardy type system with exponential nonlinearity

被引:0
|
作者
Dai, Wei [1 ]
Peng, Shaolong [1 ,2 ]
机构
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
[2] Acad Math & Syst Sci, Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
mixed order Henon-Hardy type system; exponential nonlinearity; Liouville theorems; method of scaling spheres; FRACTIONAL LAPLACIAN; MAXIMUM-PRINCIPLES; ELLIPTIC-EQUATIONS; HALF-SPACE; CLASSIFICATION; INEQUALITIES; REGULARITY; SYMMETRY;
D O I
10.1515/ans-2023-0109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the Henon-Hardy type systems with exponential nonlinearity on a half space R-+(2) {(-Delta)(alpha/2)2 u(x) = vertical bar x vertical bar(a)u(p1) (x)e(q1 nu(x)), x is an element of R-+(2), (-Delta)nu(x) = vertical bar x vertical bar(b)u(p2)(x)e(q2 nu(x)), x is an element of R-+(2), with Dirichlet boundary conditions, where 0 < alpha < 2 and p(1), p(2), q(1), q(2) > 0. First, we derived the integral representation formula corresponding to the above system under the assumption p(1) >= - 2a/alpha - 1. Then, we prove Liouville theorem for solutions to the above system via the method of scaling spheres.
引用
收藏
页码:335 / 358
页数:24
相关论文
共 50 条