A two-level iterative method with Newton-type linearization for the stationary micropolar fluid equations

被引:0
|
作者
Xing, Xin [1 ,2 ]
Liu, Demin [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-level method; Newton iterative method; Micropolar fluid equations; Finite element method; Error estimates; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT;
D O I
10.1007/s11075-023-01711-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a two-level Newton iterative method is proposed for the stationary micropolar fluid equations. Firstly, the original equations are solved on a coarse grid based on Newton-type linearization. Then, the simplified linearized equations are solved on a fine grid. The stability and error estimates of the method are given in the theoretical part. The results of the theoretical analysis show that when the coarse mesh size H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{H}$$\end{document} and fine mesh size h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{h}$$\end{document} satisfy the relation h=O(H2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{h=O(H<^>{2}})$$\end{document}, the two-level Newton iterative method can achieve an optimal convergence rate. Finally, the effectiveness and applicability of the method are verified by some numerical experiments.
引用
收藏
页码:475 / 501
页数:27
相关论文
共 50 条