Strategies to engineer metal-organic frameworks for efficient photocatalysis

被引:17
|
作者
Liu, Cheng [1 ]
Liu, Hurunqing [1 ]
Yu, Jimmy C. [1 ,2 ]
Wu, Ling [1 ]
Li, Zhaohui [1 ]
机构
[1] Fuzhou Univ, Res Inst Photocatalysis, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China
[2] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Metal-organic framework; Photocatalysis; Metal doping; Ligand functionalization; Ultrathin 2D MOFs; Defect engineering; CO2; REDUCTION; HYDROGEN-PRODUCTION; BAND-GAP; PERFORMANCE; LIGAND; OXIDATION; UIO-66; MOF-5; NANOPARTICLES; DEGRADATION;
D O I
10.1016/S1872-2067(23)64556-5
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Photocatalysis, a promising technology to convert solar energy to chemical energy, is expected to relieve the global energy shortage and environmental pollution and therefore has attracted widespread recent research attention. Metal-organic frameworks (MOFs), a class of micro-mesoporous hybrid material constructed from metal or metal nodes interconnected with multi-dentated organic linkers, have recently been demonstrated to be promising photocatalysts for a variety of reactions relevant to environmental and energy concerns due to their unique structure and characteristics. Considering that MOF-based photocatalysis burgeoned rapidly during the past several years, and with an aim to develop more efficient MOF-based photocatalytic materials, it is still necessary to summarize the strategies already reported to improve the performance of MOF-based photocatalytic materials, even though several excellent reviews on MOF-based photocatalysis have already been published. In this review, four structural engineering strategies to improve the efficiency of MOF-based photocatalysis have been summarized. These strategies include metal doping, ligand functionalization, the fabrication of ultrathin 2D MOFs, and defect engineering. These methods aim to enhance light absorption, improve charge separation and transportation, and create more catalytic active sites. Personal opinions on the opportunities, challenges, and developing trends of MOF-based photocatalysis were addressed. This review aims to provide guidance for the rational development of advanced MOF-based photocatalysts by elucidating the inherent relationship between their structural properties and catalytic activity. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Engineering Metal-organic Frameworks (MOFs) for Efficient Photocatalysis
    Deng, Xiaoyu
    Hao, Mingming
    Li, Zhaohui
    CURRENT ORGANIC CHEMISTRY, 2018, 22 (18) : 1825 - 1835
  • [2] Metal-organic frameworks for photocatalysis
    Li, Ying
    Xu, Hua
    Ouyang, Shuxin
    Ye, Jinhua
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (11) : 7563 - 7572
  • [3] Metal-Organic Frameworks for Photocatalysis
    Zhang, Teng
    Lin, Wenbin
    METAL-ORGANIC FRAMEWORKS FOR PHOTONICS APPLICATIONS, 2014, 157 : 89 - 104
  • [4] Metal-organic frameworks for photocatalysis applications
    Li, Shenshen
    Chen, Yu-Sheng
    Mulfort, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [5] Multifunctional Metal-Organic Frameworks for Photocatalysis
    Wang, Sibo
    Wang, Xinchen
    SMALL, 2015, 11 (26) : 3097 - 3112
  • [6] Strategies for engineering metal-organic frameworks as efficient photocatalysts
    Shen, Lijuan
    Liang, Ruowen
    Wu, Ling
    CHINESE JOURNAL OF CATALYSIS, 2015, 36 (12) : 2071 - 2088
  • [7] Metal-organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis
    Huang, Chao-Wei
    Nguyen, Van-Huy
    Zhou, Shi-Rong
    Hsu, Shu-Yu
    Tan, Jia-Xuan
    Wu, Kevin C. -W.
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (02) : 504 - 521
  • [8] Computational Studies of Photocatalysis with Metal-Organic Frameworks
    Wu, Xin-Ping
    Choudhuri, Indrani
    Truhlar, Donald G.
    ENERGY & ENVIRONMENTAL MATERIALS, 2019, 2 (04) : 251 - 263
  • [9] Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis
    Xiao, Juan-Ding
    Jiang, Hai-Long
    ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (02) : 356 - 366
  • [10] Metal-Organic Frameworks for Light Harvesting and Photocatalysis
    Wang, Jin-Liang
    Wang, Cheng
    Lin, Wenbin
    ACS CATALYSIS, 2012, 2 (12): : 2630 - 2640