An instrumental variable approach under dependent censoring

被引:1
|
作者
Crommen, Gilles [1 ]
Beyhum, Jad [2 ]
Van Keilegom, Ingrid [1 ]
机构
[1] Katholieke Univ Leuven, ORSTAT, Naamsestr 69, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Econ, Naamsestr 69, B-3000 Leuven, Belgium
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Dependent censoring; Causal inference; Instrumental variable; Control function; Survival analysis; COPULA-GRAPHIC ESTIMATOR; NONPARAMETRIC-ESTIMATION; QUANTILE REGRESSION; SURVIVAL FUNCTION; IDENTIFICATION; MODELS;
D O I
10.1007/s11749-023-00903-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the problem of inferring the causal effect of a variable Z on a dependently censored survival time T. We allow for unobserved confounding variables, such that the error term of the regression model for T is dependent on the confounded variable Z. Moreover, T is subject to dependent censoring. This means that T is right censored by a censoring time C, which is dependent on T (even after conditioning out the effects of the measured covariates). A control function approach, relying on an instrumental variable, is leveraged to tackle the confounding issue. Further, it is assumed that T and C follow a joint regression model with bivariate Gaussian error terms and an unspecified covariance matrix, such that the dependent censoring can be handled in a flexible manner. Conditions under which the model is identifiable are given, a two-step estimation procedure is proposed, and it is shown that the resulting estimator is consistent and asymptotically normal. Simulations are used to confirm the validity and finite-sample performance of the estimation procedure. Finally, the proposed method is used to estimate the causal effect of job training programs on unemployment duration.
引用
收藏
页码:473 / 495
页数:23
相关论文
共 50 条