Optimal control problem for nonlinear optical communications systems

被引:0
|
作者
De la Vega, Constanza S. Fernandez [1 ,2 ]
Moore, Richard [3 ,4 ]
Prieto, Mariana Ines [5 ]
Rial, Diego [1 ,2 ]
机构
[1] FCEyN UBA, Dept Matemat, FCEyN UBA, Intendente Guiraldes 2160,CABA, RA-1428 Mexico City, Buenos Aires, Argentina
[2] IMAS UBA CONICET, Intendente Guiraldes 2160,CABA, RA-1428 Mexico City, Buenos Aires, Argentina
[3] Soc Ind & Appl Math, Philadelphia, PA USA
[4] New Jersey Inst Technol, Ctr Appl Math & Stat, Newark, NJ USA
[5] Dept Matemat, UNS & INMABB UNS CONICET, Ave Alem 1253, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
Nonlinear Schr?dinger equation; Optimal control; Optical fibers; Noise immunity;
D O I
10.1016/j.jde.2022.11.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an optimal internal control problem for the cubic nonlinear Schrodinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first order optimality conditions and numerical simulations.(c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:347 / 375
页数:29
相关论文
共 50 条
  • [1] A benchmark for optimal control problem solvers for hybrid nonlinear systems
    Alamir, Mazen
    AUTOMATICA, 2006, 42 (09) : 1593 - 1598
  • [2] Stochastic maximum principle for nonlinear optimal control problem of switching systems
    Abushov, Qurban
    Aghayeva, Charkaz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 371 - 376
  • [3] The maximum principle for the nonlinear stochastic optimal control problem of switching systems
    Aghayeva, Charkaz
    Abushov, Qurban
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (02) : 341 - 352
  • [4] The maximum principle for the nonlinear stochastic optimal control problem of switching systems
    Charkaz Aghayeva
    Qurban Abushov
    Journal of Global Optimization, 2013, 56 : 341 - 352
  • [5] Hierarchical optimal control of nonlinear systems; An application to a benchmark CSTR problem
    Sadati, N.
    Ramezani, M. H.
    ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 455 - 460
  • [6] Joint Maximum Principle in the Problem of Synthesizing an Optimal Control of Nonlinear Systems
    Kostoglotov, A. A.
    Kostoglotov, A. I.
    Lazarenko, S. V.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2007, 41 (05) : 274 - 281
  • [7] On an optimal control problem for a nonlinear system
    Surkov, P. G.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 241 - 249
  • [8] OPTIMAL CONTROL IN NONLINEAR SYSTEMS
    DASARATHY, BV
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (06) : 690 - +
  • [9] Optimal control of nonlinear systems
    Banks, SP
    Cimen, T
    Optimization And Control With Applications, 2005, 96 : 353 - 367
  • [10] Sliding Mode Regulator as Solution to Optimal Control Problem for Nonlinear Polynomial Systems
    Basin, Michael
    Calderon-Alvarez, Dario
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 83 - 88