Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm

被引:58
|
作者
Daviran, M. [1 ]
Shamekhi, M. [2 ]
Ghezelbash, R. [3 ]
Maghsoudi, A. [3 ]
机构
[1] Shahrood Univ Technol, Sch Min Petr & Geophys Engn, Shahrood, Iran
[2] Univ Zanjan, Dept Elect & Comp Engn, Zanjan, Iran
[3] Amirkabir Univ Technol, Fac Min Engn, Tehran, Iran
关键词
Landslide susceptibility; Machine learning algorithms; Genetic algorithm; Receiver operator characteristics; GIS; SUPPORT VECTOR MACHINE; LOGISTIC-REGRESSION; AREA; MODELS; HAZARD; BASIN; TREE;
D O I
10.1007/s13762-022-04491-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper evaluates a comparison between three machine learning algorithms (MLAs), namely support vector machine (SVM), multilayer perceptron artificial neural network (MLP-ANN) and random forest (RF), in landslide susceptibility mapping and addresses a optimization algorithm to optimize the performance of a MLA to yield more accurate and reliable results. A genetic algorithm (GA) approach as a part of evolutionary algorithms was utilized in order to optimize the performance of best model among three utilized MLAs. The study area (Tarom-Khalkhal sub-basin) is located in North-West of Iran with mountainous nature (western part of Alborz Mountains), wherein numerous landslide occurrences were recorded. In this case, fifteen predisposing factors, gathered from aerial images and field surveys, were considered to generate the final landslide susceptibility models. The validation procedure was conducted with taking advantage of confusion matrices for different algorithms. Finally, landslide susceptibility maps were generated and evaluated through receiver operator characteristic (ROC) curves. RF algorithm showed the best performance; therefore, hybridized genetic random forest (GRF) was employed in order to optimize the hyperparameters (number of trees, number splits and depth) of the model, which can affect the performance of model. As a result, GRF has best performance among all mentioned algorithms with AUC = 0.93. As a conclusion, genetic algorithm was found to be suitable in optimizing the performance of machine learning algorithms, which is crucial when it comes to landslide susceptibility mapping.
引用
收藏
页码:259 / 276
页数:18
相关论文
共 50 条
  • [1] Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm
    M. Daviran
    M. Shamekhi
    R. Ghezelbash
    A. Maghsoudi
    International Journal of Environmental Science and Technology, 2023, 20 : 259 - 276
  • [2] Prediction and optimization studies for bioleaching of molybdenite concentrate using artificial neural networks and genetic algorithm
    Abdollahi, Hadi
    Noaparast, Mohammad
    Shafaei, Sied Ziaedin
    Akcil, Ata
    Panda, Sandeep
    Kashi, Mohammad Hazrati
    Karimi, Pouya
    MINERALS ENGINEERING, 2019, 130 : 24 - 35
  • [3] A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm
    Sun, Deliang
    Wen, Haijia
    Wang, Danzhou
    Xu, Jiahui
    GEOMORPHOLOGY, 2020, 362
  • [4] Prediction of Mechanical Strength by Using an Artificial Neural Network and Random Forest Algorithm
    Upreti, Kamal
    Verma, Manvendra
    Agrawal, Meena
    Garg, Jatinder
    Kaushik, Rekha
    Agrawal, Chinmay
    Singh, Divakar
    Narayanasamy, Rajamani
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [5] Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fao River Basin, Southern Brazil
    de Oliveira, Guilherme Garcia
    Chimelo Ruiz, Luis Fernando
    Guasselli, Laurindo Antonio
    Haetinger, Claus
    NATURAL HAZARDS, 2019, 99 (02) : 1049 - 1073
  • [6] A study on genetic algorithm optimization of artificial neural networks
    Zhong H.
    He G.
    Huo Y.
    Xie C.
    International Journal of Simulation: Systems, Science and Technology, 2016, 17 (25): : 37.1 - 37.6
  • [7] Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks
    Oh, Hyun-Joo
    KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (01) : 47 - 57
  • [8] The influence of sampling on landslide susceptibility mapping using artificial neural networks
    Gameiro, Samuel
    de Oliveira, Guilherme Garcia
    Guasselli, Laurindo Antonio
    GEOCARTO INTERNATIONAL, 2022,
  • [9] SPATIALLY AWARE LANDSLIDE SUSCEPTIBILITY PREDICTION USING A GEOGRAPHICAL RANDOM FOREST APPROACH
    Teke, A.
    Kavzoglu, T.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 363 - 370
  • [10] A hybrid random forests and artificial neural networks bagging ensemble for landslide susceptibility modelling
    Lucchese, Luisa, V
    de Oliveira, Guilherme G.
    Pedrollo, Olavo C.
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 16492 - 16511