TCPCNet: a transformer-CNN parallel cooperative network for low-light image enhancement

被引:1
|
作者
Zhang, Wanjun [1 ]
Ding, Yujie [2 ]
Zhang, Miaohui [2 ]
Zhang, Yonghua [2 ]
Cao, Lvchen [2 ]
Huang, Ziqing [2 ]
Wang, Jun [2 ]
机构
[1] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475001, Peoples R China
[2] Henan Univ, Sch Artificial Intelligence, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Transformer; Transformer-CNN; ILLUMINATION;
D O I
10.1007/s11042-023-17527-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, deep learning has made impressive achievements in low-light image enhancement. Most existing deep learning-based methods use convolutional neural networks (CNN) by stacking network depth and modifying network architecture to improve feature extraction capabilities and restore degraded images. However, these methods have obvious defects. Although CNN excels at extracting local features, its small receptive field is unable to capture the global brightness, leading to overexposure. The Transformer model from natural language processing has recently produced positive outcomes in a variety of computer vision issues thanks to its excellent global modeling capabilities. However, its complex modeling method makes it difficult to capture local details and takes up many computing resources, making it challenging to apply to the enhancement of low-light images, especially high-resolution images. Based on deep convolution and Transformer characteristics, this paper proposes a Transformer-CNN Parallel Cooperative Network (TCPCNet), which supplements image details and local brightness while ensuring global brightness control. We also changed the calculation method of the traditional Transformer to be applied to enhance high-resolution low-light images without affecting performance. Extensive experiments on public datasets show that the proposed TCPCNet achieves comparable performance against the state-of-the-art approaches.
引用
收藏
页码:52957 / 52972
页数:16
相关论文
共 50 条
  • [1] TCPCNet: a transformer-CNN parallel cooperative network for low-light image enhancement
    Wanjun Zhang
    Yujie Ding
    Miaohui Zhang
    Yonghua Zhang
    Lvchen Cao
    Ziqing Huang
    Jun Wang
    Multimedia Tools and Applications, 2024, 83 : 52957 - 52972
  • [2] LightingFormer: Transformer-CNN hybrid network for low-light image enhancement
    Bi, Cong
    Qian, Wenhua
    Cao, Jinde
    Wang, Xue
    COMPUTERS & GRAPHICS-UK, 2024, 124
  • [3] Low-light image enhancement based on Transformer and CNN architecture
    Chen, Keyuan
    Chen, Bin
    Wu, Shiqian
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3628 - 3633
  • [4] A transformer-CNN parallel network for image guided depth completion
    Li, Tao
    Dong, Xiucheng
    Lin, Jie
    Peng, Yonghong
    PATTERN RECOGNITION, 2024, 150
  • [5] Adaptive lightweight Transformer network for low-light image enhancement
    Meng, De
    Lei, Zhichun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (6-7) : 5365 - 5375
  • [6] Low-Light Image Enhancement by Combining Transformer and Convolutional Neural Network
    Yuan, Nianzeng
    Zhao, Xingyun
    Sun, Bangyong
    Han, Wenjia
    Tan, Jiahai
    Duan, Tao
    Gao, Xiaomei
    MATHEMATICS, 2023, 11 (07)
  • [7] Dual branch Transformer-CNN parametric filtering network for underwater image enhancement
    Chang, Baocai
    Li, Jinjiang
    Ren, Lu
    Chen, Zheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [8] LET: a local enhancement transformer for low-light image enhancement
    Pan, Lei
    Tian, Jun
    Zheng, Yuan
    Fu, Qiang
    Zhao, Zhiqing
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [9] An Efficient Transformer-CNN Network for Document Image Binarization
    Zhang, Lina
    Wang, Kaiyuan
    Wan, Yi
    ELECTRONICS, 2024, 13 (12)
  • [10] Low-Light Image Enhancement via Stage-Transformer-Guided Network
    Jiang, Nanfeng
    Lin, Junhong
    Zhang, Ting
    Zheng, Haifeng
    Zhao, Tiesong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3701 - 3712