Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation

被引:12
|
作者
Tornos, Fernando [1 ,2 ]
Hanchar, John M. [2 ]
Steele-MacInnis, Matthew [3 ]
Crespo, Elena [4 ]
Kamenetsky, Vadim S. [5 ]
Casquet, Cesar [1 ,4 ]
机构
[1] Inst Geociencias CSIC UCM, Dr Severo Ochoa 7, Madrid 28040, Spain
[2] Mem Univ Newfoundland, Dept Earth Sci, St John, NF A1B 3X5, Canada
[3] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G2E3, Canada
[4] Univ Complutense Madrid, Dept Petrol & Mineral, Madrid 28040, Spain
[5] Chinese Acad Sci, Inst Oceanol, Ctr Deep Sea Res, Qingdao 266071, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Magnetite-(apatite) deposits; Mineral chemistry; Isotope geochemistry; Melt inclusions; Cordillera Andes; Chile; OXIDE-COPPER-GOLD; LOWER YANGTZE-RIVER; MAGNETITE-APATITE DEPOSITS; RARE-EARTH-ELEMENT; FRANCOIS MOUNTAINS TERRANE; CARAJAS MINERAL PROVINCE; EASTERN CHINA IMPLICATIONS; HIGH-TEMPERATURE GASES; BEAR MAGMATIC ZONE; EL LACO VOLCANO;
D O I
10.1007/s00126-023-01203-w
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Magnetite-(apatite) ore deposits are interpreted as being formed by the crystallization of iron-rich ultrabasic melts, dominantly generated by the interaction of silicate melts with oxidized P-F-SO4-bearing sedimentary rocks. This hypothesis is supported by geologic evidence, experimental studies, numerical modeling, stable and radiogenic isotope geochemistry, mineralogy, and melt-and mineral-inclusion data. Assimilation of crustal rocks during ascent promotes separation from a silicate magma of Fe-rich, Si-Al-poor melts with low solidus temperatures and viscosities, allowing coalescence, migration, and emplacement at deep to subaerial crustal environments. When the iron-rich melt attains neutral buoyancy, fractional crystallization leads to melt immiscibility similar to that observed in industrial blast furnaces, which promotes separation of massive magnetite ore overlain by different types of "slag" containing actinolite or diopside +/- phosphates +/- magnetite +/- feldspar +/- anhydrite +/- scapolite, commonly enriched in high field strength elements. The mineralogy and morphology of this iron-depleted cap strongly depend on the depth of emplacement and composition of the iron-rich magma. Most of these systems exhibit high oxygen fugacity, which inhibits the precipitation of significant sulfide mineralization. The initially high fO(2) of these systems also promotes the formation of low-Ti (< 1 wt%) magnetite: Ti acts as an incompatible component and is enriched in the iron-poor caps and in the hydrothermal aureole. High fluid-phase pressures produced during massive crystallization of magnetite from the melt further facilitate the exsolution of magmatic-hydrothermal fluids responsible for the formation of aureoles of alkali-calcic-iron alteration with hydrothermal replacement-style iron mineralization. On the whole, these systems are dramatically different from the magmatic-hydrothermal systems related to intermediate to felsic igneous rocks; they are more akin to carbonatite and other ultramafic rocks.
引用
收藏
页码:189 / 225
页数:37
相关论文
共 23 条
  • [1] Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation
    Fernando Tornos
    John M. Hanchar
    Matthew Steele-MacInnis
    Elena Crespo
    Vadim S. Kamenetsky
    Cesar Casquet
    Mineralium Deposita, 2024, 59 : 189 - 225
  • [2] Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit, Chile
    Tornos, Fernando
    Velasco, Francisco
    Hanchar, John M.
    GEOLOGY, 2016, 44 (06) : 427 - 430
  • [3] Glass formation from iron-rich phosphate melts
    Zhang, L.
    Brow, R. K.
    Schlesinger, M. E.
    Ghussn, L.
    Zanotto, E. D.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (25-27) : 1252 - 1257
  • [4] Formation of magnetite and iron-rich carbonates by thermophilic iron-reducing bacteria
    Zhang, CL
    Vali, H
    Liu, S
    Roh, Y
    Cole, D
    Kirschvink, JL
    Onsttot, T
    McKay, D
    Phelps, T
    INSTRUMENTS, METHODS, AND MISSIONS FOR THE INVESTIGATION OF EXTRATERRESTRIAL MICROORGANISMS, 1997, 3111 : 61 - 68
  • [5] The role of the subducting slab and melt crystallization in the formation of magnetite-(apatite) systems, Coastal Cordillera of Chile
    Tornos, Fernando
    Hanchar, John M.
    Munizaga, Rodrigo
    Velasco, Francisco
    Galindo, Carmen
    MINERALIUM DEPOSITA, 2021, 56 (02) : 253 - 278
  • [6] The role of the subducting slab and melt crystallization in the formation of magnetite-(apatite) systems, Coastal Cordillera of Chile
    Fernando Tornos
    John M. Hanchar
    Rodrigo Munizaga
    Francisco Velasco
    Carmen Galindo
    Mineralium Deposita, 2021, 56 : 253 - 278
  • [7] Methanogenic Archaea as Catalysts for Magnetite Formation in Iron-Rich Marine Sediments
    Lin, Zhiyong
    Lin, Haixin
    Strauss, Harald
    Roberts, Andrew P.
    Niu, Mingyang
    Fang, Yunxin
    Yang, Tao
    Sun, Xiaoming
    Birgel, Daniel
    Peckmann, Jorn
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2024, 129 (06)
  • [8] Genetic model of the El Laco magnetite-apatite deposits by extrusion of iron-rich melt
    Tobias Keller
    Fernando Tornos
    John M. Hanchar
    Dorota K. Pietruszka
    Arianna Soldati
    Donald B. Dingwell
    Jenny Suckale
    Nature Communications, 13
  • [9] Evidence for iron-rich sulfate melt during magnetite(-apatite) mineralization at El Laco, Chile
    Bain, Wyatt M.
    Steele-MacInnis, Matthew
    Tornos, Fernando
    Hanchar, John M.
    Creaser, Emily C.
    Pietruszka, Dorota K.
    GEOLOGY, 2021, 49 (09) : 1044 - 1048
  • [10] Genetic model of the El Laco magnetite-apatite deposits by extrusion of iron-rich melt
    Keller, Tobias
    Tornos, Fernando
    Hanchar, John M.
    Pietruszka, Dorota K.
    Soldati, Arianna
    Dingwell, Donald B.
    Suckale, Jenny
    NATURE COMMUNICATIONS, 2022, 13 (01)