Effect of ultrasonic intensity on microstructure and mechanical properties of steel alloy in direct energy deposition-Arc

被引:8
|
作者
Ji, Feilong [1 ,3 ]
Qin, Xunpeng [2 ]
Ni, Mao [1 ,4 ]
Hu, Zeqi [1 ,4 ]
Wu, Mengwu [1 ,4 ]
机构
[1] Wuhan Univ Technol, Sch Automot Engn, Wuhan 430070, Peoples R China
[2] Hubei Longzhong Lab, Xiangyang 441000, Peoples R China
[3] Huanggang Normal Univ, Sch Electromech & Intelligent Mfg, Huanggang 438000, Peoples R China
[4] Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
基金
中国博士后科学基金;
关键词
Direct energy deposition-Arc; Different ultrasonic intensity; Molten pool solidification; Mechanical properties; Grain refining; FRAGMENTATION; TI-6AL-4V; EVOLUTION; SPEED; WELD;
D O I
10.1016/j.ultras.2023.107090
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To study the effect of ultrasonic intensity on the microstructure and mechanical properties during the direct energy deposition-Arc (DED-Arc) of ER70S-6 steel alloy, an ultrasound assisted DED-Arc system was developed by coupling ultrasonic energy with the electric arc deposition process. The propagation and vibration distribution of ultrasound in the substrate were analyzed by numerical simulation method. Deposition layers were fabricated using different ultrasonic amplitudes, and the microstructure, microhardness and tensile properties of the fabricated parts were systematically investigated. The results show that as the ultrasonic intensity increased, the grain refinement area expanded from the center of the molten pool to the surrounding area, and the grain morphology transforms from coarse columnar grains to fine equiaxed grains. When the ultrasonic amplitude was 15 & mu;m, the grain refinement area of the cross-section was 94.6%, the average grain size was significantly increased to about grade 6. The microhardness increased by 10.6%. Thousands of ultrasonic cavitation events not only enhance the supercooling and wettability of the melt pool to promote nucleation, but also break the columnar grains into small grains by intense shock waves, which significantly improve the microstructure homogeneity and mechanical properties. The research provides an alternative approach to overcoming the longstanding problem of coarse columnar grains in the field of DED-Arc.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Microstructure and mechanical properties of 304 stainless steel produced by interpass milling hybrid direct energy deposition-arc
    Zhao, Xiaohui
    Li, Ziwei
    Yang, Bin
    Sun, Xiaoyu
    Sun, Guorui
    Wang, Shupeng
    Chen, Chao
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 3744 - 3756
  • [2] Effect of heat treatment on microstructure and mechanical properties of directed energy deposition-Arc 300M steel
    Xiong, YiBo
    Wen, DongXu
    Zheng, ZhiZhen
    Sun, ChaoYuan
    Xie, Jing
    Li, JianJun
    MATERIALS CHARACTERIZATION, 2023, 198
  • [3] The effect of vanadium on the microstructure and mechanical properties of TiAl alloy fabricated by twin-wire directed energy deposition-arc
    Zhou, Wenlu
    Shen, Chen
    Hua, Xueming
    Wang, Lin
    Zhang, Yuelong
    Li, Fang
    Xin, Jianwen
    Ding, Yuhan
    ADDITIVE MANUFACTURING, 2023, 62
  • [4] Investigation of Mechanical Properties and Microstructure Analysis of 5356 Al Alloy Thin Plate and Block Fabricated by Directed Energy Deposition-Arc
    Srinivas, M. Naveen
    Kumar, Yogesh
    Vimal, K. E. K.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [5] Effect of variable polarity during cold metal transfer on microstructure and mechanical properties of directed energy deposition-arc built 2209 duplex stainless steel
    Wu, Kanglong
    Hua, Xueming
    Shen, Chen
    Ding, Yuhan
    Xin, Jianwen
    Mou, Gang
    Wang, Lin
    Zhang, Yuelong
    Zhou, Wenlu
    Reddy, Kolan Madhav
    ADDITIVE MANUFACTURING, 2023, 75
  • [6] Investigation on microstructure characteristics and mechanical properties of twin wire-directed energy deposition-arc fabricated TiAl alloy regulated by the line energy
    Wang, Lin
    Shen, Chen
    Zhang, Yuelong
    Li, Fang
    Zhou, Wenlu
    Ruan, Gang
    Ding, Yuhan
    Wu, Kanglong
    Hua, Xueming
    INTERMETALLICS, 2024, 165
  • [7] Microstructure and mechanical properties of directed energy deposition-arc/wire bimetallic hierarchical structures of hot-working tool steel and martensitic stainless steel
    Hu, Zeqi
    Hua, Lin
    Ni, Mao
    Ji, Feilong
    Qin, Xunpeng
    ADDITIVE MANUFACTURING, 2023, 67
  • [8] Extended reality implementation possibilities in direct energy deposition-arc
    Lund, Hannu
    Penttila, Sakari
    Skriko, Tuomas
    FRONTIERS IN SUSTAINABILITY, 2024, 5
  • [9] Effect of Near Immersion Active Cooling Technology on the Formation and Microstructure of Directed Energy Deposition-Arc Inconel 718 Alloy
    Huan, Pengcheng
    Teng, Fei
    Wang, Xiaonan
    He, Lijia
    Song, Yawei
    Wang, Zhentao
    Zhang, Qingyu
    Di, Hongshuang
    METALS AND MATERIALS INTERNATIONAL, 2024,
  • [10] Tailoring the microstructure and tensile properties of directed energy deposition-arc buildup 2209 duplex stainless steel by variable polarity energy arrangement
    Wu, Kanglong
    Shen, Chen
    Xin, Jianwen
    Ding, Yuhan
    Wang, Lin
    Zhou, Wenlu
    Ruan, Gang
    Zhang, Yuelong
    Li, Fang
    Reddy, Kolan Madhav
    Chen, Man-Tai
    Hua, Xueming
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 127 : 433 - 445