Choosing shape parameters for regression in reproducing kernel Hilbert space and variable selection

被引:0
|
作者
Tan, Xin [1 ]
Xia, Yingcun [2 ]
Kong, Efang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
General Gaussian RBF kernel; kernel ridge regression (KRR); oracle property; reproducing kernel Hilbert space (RKHS); variable selection;
D O I
10.1080/10485252.2023.2164890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Gaussian radial basis function (RBF) is a widely used kernel function in kernel-based methods. The parameter in RBF, referred to as the shape parameter, plays an essential role in model fitting. In this paper, we propose a method to select the shape parameters for the general Gaussian RBF kernel. It can simultaneously serve for variable selection and regression function estimation. For the former, asymptotic consistency is established; for the latter, the estimation is as efficient as if the true or optimal shape parameters are known. Simulations and real examples are used to illustrate the method's performance of prediction by comparing it with other popular methods.
引用
收藏
页码:514 / 528
页数:15
相关论文
共 50 条
  • [2] Model-free Variable Selection in Reproducing Kernel Hilbert Space
    Yang, Lei
    Lv, Shaogao
    Wang, Junhui
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [3] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588
  • [4] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [5] Kernel partial least squares regression in Reproducing Kernel Hilbert Space
    Rosipal, R
    Trejo, LJ
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 97 - 123
  • [6] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Kim, Choongrak
    Yang, Hojin
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 454 - 462
  • [7] Least squares kernel ensemble regression in Reproducing Kernel Hilbert Space
    Shen, Xiang-Jun
    Dong, Yong
    Gou, Jian-Ping
    Zhan, Yong-Zhao
    Fan, Jianping
    [J]. NEUROCOMPUTING, 2018, 311 : 235 - 244
  • [8] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Choongrak Kim
    Hojin Yang
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 454 - 462
  • [9] Functional additive expectile regression in the reproducing kernel Hilbert space
    Liu, Yuzi
    Peng, Ling
    Liu, Qing
    Lian, Heng
    Liu, Xiaohui
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [10] A REPRODUCING KERNEL HILBERT SPACE APPROACH TO FUNCTIONAL LINEAR REGRESSION
    Yuan, Ming
    Cai, T. Tony
    [J]. ANNALS OF STATISTICS, 2010, 38 (06): : 3412 - 3444