A Hybrid-Convolution Spatial-Temporal Recurrent Network For Traffic Flow Prediction

被引:90
|
作者
Zhang, Xu [1 ,2 ]
Wen, Shunjie [3 ]
Yan, Liang [1 ]
Feng, Jiangfan [1 ,2 ]
Xia, Ying [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Comp Sci & Technol, Chongqing, Peoples R China
[2] Minist Culture & Tourism, Key Lab Tourism Multisource Data Percept & Decis, Beijing, Peoples R China
[3] Inha Univ, Dept Elect & Comp Engn, Incheon, South Korea
来源
COMPUTER JOURNAL | 2024年 / 67卷 / 01期
关键词
traffic flow prediction; spatial-temporal analysis; hybrid-convolution; LSTM; attention mechanism;
D O I
10.1093/comjnl/bxac171
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate traffic flow prediction is valuable for satisfying citizens' travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existing works proposed to rely on strict periods (e.g. daily and weekly) and separate the extraction of temporal and spatial features. Besides, most Recurrent Neural Network (RNN)-based models either fail to capture variations of spatial-temporal features in adjacent timestamps or ignore details of closeness. In this paper, we propose a Multi-attention based Hybrid-convolution Spatial-temporal Recurrent Network (MHSRN) for region-based traffic flow prediction. In MHSRN, we leverage a hybrid-convolution module to capture both shifting features and rich information at the nearest timestamps, and we apply the downsampling procedure to reduce the computation of RNN-based model. Furthermore, we propose to adopt a space-aware multi-attention module to re-perceive global and local spatial-temporal features. We conduct extensive experiments based on three real-world datasets. The results show that the MHSRN outperforms other challenging baselines by approximately 0.2-8.1% in mean absolute error on all datasets. On datasets other than TaxiBJ, the MHSRN reduces the root mean square error by at least 2.8% compared with the RNN-based model.
引用
收藏
页码:236 / 252
页数:17
相关论文
共 50 条
  • [1] Spatial-Temporal Complex Graph Convolution Network for Traffic Flow Prediction
    Bao, Yinxin
    Huang, Jiashuang
    Shen, Qinqin
    Cao, Yang
    Ding, Weiping
    Shi, Zhenquan
    Shi, Quan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [2] Spatial-Temporal Traffic Flow Prediction With Fusion Graph Convolution Network and Enhanced Gated Recurrent Units
    Cai, Chuang
    Qu, Zhijian
    Ma, Liqun
    Yu, Lianfei
    Liu, Wenbo
    Ren, Chongguang
    IEEE ACCESS, 2024, 12 : 56477 - 56491
  • [3] STCNet: Spatial-Temporal Convolution Network for Traffic Speed Prediction
    Ma, Mingjun
    Peng, Bo
    Xiao, Ding
    Ji, Yugang
    Shi, Chuan
    ADVANCED DATA MINING AND APPLICATIONS, 2020, 12447 : 315 - 323
  • [4] A Spatial-Temporal Gated Hypergraph Convolution Network for Traffic Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Chen, Yanjiao
    Li, Jianxin
    Liu, Qin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9546 - 9559
  • [5] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [6] STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
    Yu, Xian
    Bao, Yin-Xin
    Shi, Quan
    HELIYON, 2023, 9 (09)
  • [7] A Hybrid Transformer-based Spatial-Temporal Network for Traffic Flow Prediction
    Tian, Guanqun
    Li, Dequan
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [8] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [9] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [10] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Lyuchao Liao
    Zhiyuan Hu
    Yuxin Zheng
    Shuoben Bi
    Fumin Zou
    Huai Qiu
    Maolin Zhang
    Applied Intelligence, 2022, 52 : 16104 - 16116