Ultrathin Indium Oxide Thin-Film Transistors With Gigahertz Operation Frequency

被引:3
|
作者
Charnas, Adam [1 ]
Anderson, Jackson [1 ]
Zhang, Jie [1 ]
Zheng, Dongqi [1 ]
Weinstein, Dana [1 ]
Ye, Peide D. D. [1 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
Atomic layer deposition (ALD); back-end-of-line (BEOL) compatible; high-frequency; indium oxide; oxide semiconductor; radio frequency (RF); thin-film transistor; VOLTAGE; IN2O3;
D O I
10.1109/TED.2022.3231226
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The remarkable dc performance of ultra thin indium oxide transistors offers a path toward highperformance back-end-of-line (BEOL) and monolithically integrated logic and memory devices for next-generation computing. Its very low thermal budget, high reliability, scalability, and 3-D conformality are additional factors that make these devices well-suited for these applications. Here, the radio frequency (RF) performance of indium oxide transistors with a high working frequency is characterized for the first time. A new record high cutoff frequency (fT) among amorphous metal-oxide-semiconductor transistors is reported with simultaneously high maximum oscillation frequency (fmax). Detailed statistical measurements across a wide variety of channel lengths and gate overlaps provide insight into optimization of the device parasitics and future scaling trends. Even at relatively long channel lengths of 1 mu m, the operation frequency is sufficient for these devices to function alongside traditional silicon CMOS devices that are generally clocked at less than 5 GHz.
引用
收藏
页码:532 / 536
页数:5
相关论文
共 50 条
  • [1] Sputtered boron indium oxide thin-film transistors
    Stewart, Kevin A.
    Gouliouk, Vasily
    Keszler, Douglas A.
    Wager, John F.
    SOLID-STATE ELECTRONICS, 2017, 137 : 80 - 84
  • [2] Solution processed boron doped indium oxide thin-film as channel layer in thin-film transistors
    S. Arulkumar
    S. Parthiban
    D. Gnanaprakash
    J. Y. Kwon
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 18696 - 18701
  • [3] Solution processed boron doped indium oxide thin-film as channel layer in thin-film transistors
    Arulkumar, S.
    Parthiban, S.
    Gnanaprakash, D.
    Kwon, J. Y.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (20) : 18696 - 18701
  • [4] Characteristics of Ultrathin Indium Oxide Thin-Film Transistors with Diverse Channel Lengths Fabricated by Atomic Layer Deposition
    Lee, Ju-Hun
    Kang, Seung-Youl
    Yang, Jong-Heon
    Pi, Jae-Eun
    Hwang, Chi-Sun
    Moon, Jaehyun
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2024, 261 (07):
  • [5] Si-incorporated amorphous indium oxide thin-film transistors
    Aikawa, Shinya
    Nabatame, Toshihide
    Tsukagoshi, Kazuhito
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (09)
  • [6] Transparent thin-film transistors with zinc indium oxide channel layer
    Dehuff, NL
    Kettenring, ES
    Hong, D
    Chiang, HQ
    Wager, JF
    Hoffman, RL
    Park, CH
    Keszler, DA
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
  • [7] AC/DC Rectification With Indium Gallium Oxide Thin-Film Transistors
    McFarlane, Brian R.
    Kurahashi, Peter
    Heineck, Daniel P.
    Presley, Rick E.
    Sundholm, Eric
    Wager, John F.
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (04) : 314 - 316
  • [8] Thin-film transistors with amorphous indium gallium oxide channel layers
    Chiang, H. Q.
    Hong, D.
    Hung, C. M.
    Presley, R. E.
    Wager, John F.
    Park, C. -H
    Keszler, D. A.
    Herman, G. S.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (06): : 2702 - 2705
  • [9] Amorphous Indium-Zinc Oxide Semiconductor Thin-Film Transistors
    Li, Jun-Yi
    Chang, Sheng-Po
    Hua, Wen-Chen
    Chang, Shoou-Jinn
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2014, 9 (03) : 388 - 391
  • [10] Sol–gel processed indium zinc oxide thin film and transparent thin-film transistors
    Xifeng Li
    Qian Li
    Enlong Xin
    Jianhua Zhang
    Journal of Sol-Gel Science and Technology, 2013, 65 : 130 - 134