Spectroscopic Confirmation of Obscured AGN Populations from Unsupervised Machine Learning

被引:3
|
作者
Hviding, Raphael E. [1 ,2 ]
Hainline, Kevin N. [1 ]
Goulding, Andy D. [3 ]
Greene, Jenny E. [3 ]
机构
[1] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA
[2] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[3] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
来源
ASTRONOMICAL JOURNAL | 2024年 / 167卷 / 04期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; INFRARED-SURVEY-EXPLORER; BLACK-HOLE GROWTH; MIDINFRARED SELECTION; X-RAY; QUASAR SURVEY; DATA RELEASE; RED QUASARS; GALAXIES;
D O I
10.3847/1538-3881/ad28b4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the result of a spectroscopic campaign targeting active galactic nucleus (AGN) candidates selected using a novel unsupervised machine-learning (ML) algorithm trained on optical and mid-infrared photometry. AGN candidates are chosen without incorporating prior AGN selection criteria and are fainter, redder, and more numerous, similar to 340 AGN deg(-2), than comparable photometric and spectroscopic samples. In this work, we obtain 178 rest-optical spectra from two candidate ML-identified AGN classes with the Hectospec spectrograph on the MMT Observatory. We find that our first ML-identified group is dominated by Type I AGNs (85%) with a <3% contamination rate from non-AGNs. Our second ML-identified group is mostly comprised of Type II AGNs (65%), with a moderate contamination rate of 15% primarily from star-forming galaxies. Our spectroscopic analyses suggest that the classes recover more obscured AGNs, confirming that ML techniques are effective at recovering large populations of AGNs at high levels of extinction. We demonstrate the efficacy of pairing existing WISE data with large-area and deep optical/near-infrared photometric surveys to select large populations of AGNs and recover obscured growth of supermassive black holes. This approach is well suited to upcoming photometric surveys, such as Euclid, Rubin, and Roman.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Unsupervised Machine Learning for the Identification of Preflare Spectroscopic Signatures
    Woods, Magnus M.
    Sainz Dalda, Alberto
    De Pontieu, Bart
    ASTROPHYSICAL JOURNAL, 2021, 922 (02):
  • [2] Infrared spectroscopic confirmation of z ∼ 2 photometrically selected obscured quasars
    Ishikawa, Yuzo
    Wang, Ben
    Zakamska, Nadia L.
    Richards, Gordon T.
    Hennawi, Joseph F.
    Rivera, Angelica B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (01) : 350 - 361
  • [3] Lessons from infant learning for unsupervised machine learning
    Lorijn Zaadnoordijk
    Tarek R. Besold
    Rhodri Cusack
    Nature Machine Intelligence, 2022, 4 : 510 - 520
  • [4] Lessons from infant learning for unsupervised machine learning
    Zaadnoordijk, Lorijn
    Besold, Tarek R.
    Cusack, Rhodri
    NATURE MACHINE INTELLIGENCE, 2022, 4 (06) : 510 - 520
  • [5] BAT AGN Spectroscopic Survey - XIII. The nature of the most luminous obscured AGN in the low-redshift universe
    Bar, Rudolf E.
    Trakhtenbrot, Benny
    Oh, Kyuseok
    Koss, Michael J.
    Wong, Ivy
    Ricci, Claudio
    Schawinski, Kevin
    Weigel, Anna K.
    Sartori, Lia F.
    Ichikawa, Kohei
    Secrest, Nathan J.
    Stern, Daniel
    Pacucci, Fabio
    Mushotzky, Richard
    Powell, Meredith C.
    Ricci, Federica
    Sani, Eleonora
    Smith, Krista L.
    Harrison, Fiona A.
    Lamperti, Isabella
    Urry, C. Megan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (03) : 3073 - 3092
  • [6] Obscured and unobscured AGN populations in a hard-X-ray selected sample of the XMDS survey
    Tajer, M.
    Polletta, M.
    Chiappetti, L.
    Maraschi, L.
    Trinchieri, G.
    Maccagni, D.
    Andreon, S.
    Garcet, O.
    Surdej, J.
    Pierre, M.
    Le Fevre, O.
    Franceschini, A.
    Lonsdale, C. J.
    Surace, J. A.
    Shupe, D. L.
    Fang, F.
    Rowan-Robinson, M.
    Smith, H. E.
    Tresse, L.
    ASTRONOMY & ASTROPHYSICS, 2007, 467 (01) : 73 - +
  • [7] Obscured and unobscured AGN populations in a hard-X-ray selected sample of the XMDS survey
    Tajer, M.
    Polletta, M.
    Chiappetti, L.
    Maraschi, L.
    Trinchieri, G.
    Maccagni, D.
    Andreon, S.
    Garcet, O.
    Surdej, J.
    Pierre, M.
    Le Fèvre, O.
    Franceschini, A.
    Lonsdale, C.J.
    Surace, J.A.
    Shupe, D.L.
    Fang, F.
    Rowan-Robinson, M.
    Smith, H.E.
    Tresse, L.
    Astronomy and Astrophysics, 2007, 467 (01): : 73 - 91
  • [8] Obscured AGN: Clues from high-resolution imaging and spectroscopy
    Bianchi, S
    Guainazzi, M
    Chiaberge, M
    PROCEEDINGS OF THE X-RAY UNIVERSE 2005, VOLS 1 AND 2, 2006, 604 : 521 - +
  • [9] Unsupervised learning of structure in spectroscopic cubes
    Araya, M.
    Mendoza, M.
    Solar, M.
    Mardones, D.
    Bayo, A.
    ASTRONOMY AND COMPUTING, 2018, 24 : 25 - 35
  • [10] Machine-Learning Classifiers for Fermi AGN
    Hassan, T.
    Mirabal, N.
    Contreras, J. L.
    Oya, I.
    HIGH ENERGY GAMMA-RAY ASTRONOMY, 2012, 1505 : 701 - 704