Modulating the Coordination Environment of Carbon-Dot-Supported Fe Single-Atom Nanozymes for Enhanced Tumor Therapy

被引:11
|
作者
Han, Yu [1 ]
Ge, Ku [1 ]
Zhao, Ying [2 ]
Bottini, Massimo [3 ,4 ]
Fan, Dehui [1 ]
Wu, Wenchang [1 ]
Li, Luwei [1 ]
Liu, Fengsong [5 ]
Gao, Shutao [2 ]
Liang, Xing-Jie [6 ]
Zhang, Jinchao [1 ]
机构
[1] Hebei Univ, Coll Chem & Mat Sci, State Key Lab New Pharmaceut Preparat & Excipients, Key Lab Chem Biol Hebei Prov,Key Lab Med Chem & Mo, Baoding 071002, Peoples R China
[2] Hebei Agr Univ, Coll Sci, Baoding 071001, Peoples R China
[3] Univ Roma Tor Vergata, Dept Expt Med, I-00133 Rome, Italy
[4] Sanford Burnham Prebys, La Jolla, CA 92037 USA
[5] Hebei Univ, Coll Life Sci, Key Lab Zool Systemat & Applicat, Baoding 071002, Peoples R China
[6] Natl Ctr Nanosci & Technol China, CAS Ctr Excellence Nanosci, CAS Key Lab Biol Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dots; chemodynamic therapy; coordination environment; photothermal therapy; single-atom nanozymes; PROGRESS;
D O I
10.1002/smll.202306656
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, carbon dot (CD)-supported Fe single-atom nanozymes with high content of pyrrolic N and ultrasmall size (ph-CDs-Fe SAzyme) are fabricated by a phenanthroline-mediated ligand-assisted strategy. Compared with phenanthroline-free nanozymes (CDs-Fe SAzyme), ph-CDs-Fe SAzyme exhibit higher peroxidase (POD)-like activity due to their structure similar to that of ferriporphyrin in natural POD. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analyses show that metal Fe is dispersed in ph-CDs-Fe SAzyme as single atoms. Steady-state kinetic studies show that the maximum velocity (Vmax) and turnover number (kcat) of H2O2 homolytic cleavage catalyzed by ph-CDs-Fe SAzyme are 3.0 and 6.2 more than those of the reaction catalyzed by CDs-Fe SAzyme. Density functional theory (DFT) calculations show that the energy barrier of the reaction catalyzed by ph-CDs-Fe SAzyme is lower than that catalyzed by CDs-Fe SAzyme. Antitumor efficacy experiments show that ph-CDs-Fe SAzyme can efficiently inhibit the growth of tumor cells both in vitro and in vivo by synergistic chemodynamic and photothermal effects. Here a new paradigm is provided for the development of efficient antitumor therapeutic approaches based on SAzyme with POD-like activity. Introducing phenanthroline significantly increases the content of pyrrolic N in carbon dot (CD)-supported Fe single-atom nanozymes (ph-CDs-Fe SAzyme) and enhances their peroxidase-like activity. Combing the excellent tumor penetration ability, high peroxidase-like activity, and excellent photothermal efficiency, ph-CDs-Fe SAzyme can locally trigger strong and synergistic chemodynamic and photothermal antitumor therapy.image
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tumor Microenvironment Responsive Single-Atom Nanozymes for Enhanced Antitumor Therapy
    Chang, Mengyu
    Hou, Zhiyao
    Wang, Man
    Li, Chunxia
    Al Kheraif, Abdulaziz A.
    Lin, Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (15)
  • [2] Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance
    Xinyuan Li
    Hongpan Rong
    Jiatao Zhang
    Dingsheng Wang
    Yadong Li
    Nano Research, 2020, 13 : 1842 - 1855
  • [3] Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance
    Li, Xinyuan
    Rong, Hongpan
    Zhang, Jiatao
    Wang, Dingsheng
    Li, Yadong
    NANO RESEARCH, 2020, 13 (07) : 1842 - 1855
  • [4] Regulating the N Coordination Environment of Co Single-Atom Nanozymes for Highly Efficient Oxidase Mimics
    Li, Zhe
    Liu, Fangning
    Chen, Chuanxia
    Jiang, Yuanyuan
    Ni, Pengjuan
    Song, Ningning
    Hu, Yang
    Xi, Shibo
    Liang, Minmin
    Lu, Yizhong
    NANO LETTERS, 2023, 23 (04) : 1505 - 1513
  • [5] Modulating the local coordination environment of cobalt single-atomic nanozymes for enhanced catalytic therapy against bacteria
    Zhang, Juyang
    Sun, Baohong
    Zhang, Ming
    Su, Yutian
    Xu, Wang
    Sun, Yuhan
    Jiang, Huijun
    Zhou, Ninglin
    Shen, Jian
    Wu, Fan
    ACTA BIOMATERIALIA, 2023, 164 : 563 - 576
  • [6] Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction
    Tomboc, Gracita M.
    Kim, Taekyung
    Jung, Sangmin
    Yoon, Hyo Jae
    Lee, Kwangyeol
    SMALL, 2022, 18 (17)
  • [7] Advances in the application of single-atom nanozymes for heavy metal ion detection, tumor therapy and antimicrobial therapy
    Wang, Fangzheng
    Wang, Yingying
    Wang, Huixin
    Zhao, Guanhui
    Li, Jihao
    Wang, Yaoguang
    MICROCHEMICAL JOURNAL, 2023, 191
  • [8] Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity
    Feng, Wenhao
    Liu, Chunli
    Zhang, Guangxun
    Su, Yichun
    Sun, Yangyang
    Pang, Huan
    ENERGYCHEM, 2024, 6 (02)
  • [9] Non-heme Iron Single-Atom Nanozymes as Peroxidase Mimics for Tumor Catalytic Therapy
    Yang, Qingyuan
    Liu, Jiawei
    Cai, Wentao
    Liang, Xiao
    Zhuang, Zechao
    Liao, Tao
    Zhang, Fengxian
    Hu, Weikang
    Liu, Pengxin
    Fan, Sanjun
    Yu, Wenqian
    Jiang, Bingbing
    Li, Cao
    Wang, Dingsheng
    Xu, Ziqiang
    NANO LETTERS, 2023, 23 (18) : 8585 - 8592
  • [10] Atomic-level modulation of local coordination environment at Fe single-atom sites for enhanced oxygen reduction
    Sun, Jing
    Xue, Hui
    Lu, Lanlu
    Gao, Mingbin
    Guo, Niankun
    Song, Tianshan
    Dong, Hongliang
    Zhang, Jiangwei
    Wu, Limin
    Wang, Qin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 313