Viscoelectric effect analysis in an electroosmotic flow with microchannel wall slip

被引:2
|
作者
Ramos, Edgar A. [1 ]
Monsivais, Ian G. [2 ]
Mendez, Federico [2 ]
Lizardi, Jose J. [2 ,3 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ingn, Div Ciencias Bas, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Termofluidos, Mexico City 04510, Mexico
[3] Univ Autonoma Ciudad Mexico, Colegio Ciencia & Tecnol, Campus San Lorenzo Tezonco, Mexico City 09790, Mexico
关键词
dimensionless; viscosity; function; induced; electric; potential;
D O I
10.1088/1402-4896/acd609
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we developed a numerical analysis for an electroosmotic flow circulating in a rectangular microchannel considering electrolyte viscosity as a function of the induced electric field; which is also reflected in the slip condition imposed on the system walls, since the slip length is a function of the fluid viscosity. It should be clarified this is an entirely hydrodynamic problem, and for this reason there are no induced pressure gradients, because we are in the presence of a purely electroosmotic flow, where the fluid motion is due only to electrokinetic forces. Based on these comments, the problem is centered on high induced potentials, enabling viscoelectric effect analysis in the electroosmotic flow, which leads to significant increases in velocity and volumetric flow profiles compared to the case where the viscosity is a constant and there is no slip condition. Due to analytical analysis limitations, we implemented a dimensionless equation scheme defined by the continuity equation, the momentum equations in the x and y direction, the Poisson-Boltzmann equation, and the charge conservation equation to obtain the velocity and volumetric flow rate profiles mentioned above. This model is described in its variational form in order to implement the finite element technique using free software, FreeFem++. The results obtained show how the viscoelectric effect is relevant when working with high induced potentials; that is, for values of ? over bar >1
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Mass transport in oscillatory electroosmotic viscoelectric flow in a hydrophobic microchannel with steric effect
    Banos, R.
    Arcos, J.
    Bautista, O.
    Mendez, F.
    FLUID DYNAMICS RESEARCH, 2023, 55 (01)
  • [3] Analysis of thermal transport and entropy generation characteristics for electroosmotic flow through a hydrophobic microchannel considering viscoelectric effect
    Pabi, Souvik
    Mehta, Sumit Kumar
    Pati, Sukumar
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 127
  • [4] Viscoelectric effect on electroosmotic flow in a cylindrical microcapillary
    Marroquin-Desentis, J.
    Mendez, F.
    Bautista, O.
    FLUID DYNAMICS RESEARCH, 2016, 48 (03)
  • [5] Effect of boundary slip on electroosmotic flow in a curved rectangular microchannel
    Liu, Yong-Bo
    CHINESE PHYSICS B, 2024, 33 (07)
  • [6] VISCOELECTRIC EFFECT ON THE ELECTROOSMOTIC FLOW IN NANOCHANNELS WITH HETEROGENEOUS ZETA POTENTIALS
    Jimenez, Edson M.
    Mendez, Federico
    Escandon, Juan P.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 10, 2019,
  • [7] Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under electrokinetic wall effect
    Kang, YJ
    Yang, C
    Huang, XY
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2004, 42 (19-20) : 2011 - 2027
  • [8] Combined viscoelectric and steric effects on the electroosmotic flow in a microchannel under induced high zeta potentials
    Jimenez, E.
    Escandon, J.
    Mendez, F.
    Bautista, O.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2017, 531 : 221 - 233
  • [9] Thermoelectric Effect on Electroosmotic Flow in Microchannel
    Xu, Zheng
    Yu, Xiao-yu
    Du, Li-qun
    Yang, Lun-lei
    Liu, Chong
    Wang, Li-ding
    8TH CHINA INTERNATIONAL NANOSCIENCE AND TECHNOLOGY SYMPOSIUM (CINSTS09), 2009, 188
  • [10] Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition
    Tan, Zhen
    Qi, Hai-tao
    Jiang, Xiao-yun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (06) : 689 - 696