Sensitivity analysis using bias functions for studies extending inferences from a randomized trial to a target population

被引:10
|
作者
Dahabreh, Issa J. [1 ,2 ,3 ]
Robins, James M. [1 ,2 ,3 ]
Haneuse, Sebastien J. -P. A. [2 ]
Saeed, Iman [4 ]
Robertson, Sarah E. [1 ,2 ]
Stuart, Elizabeth A. [5 ]
Hernan, Miguel A. [1 ,2 ,3 ,6 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, CAUSALab, Boston, MA USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[4] Brown Univ, Ctr Evidence Synth Hlth, Sch Publ Hlth, Dept Hlth Serv Policy & Practice, Providence, RI USA
[5] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth Biostat & Hlth Policy & Manageme, Baltimore, MD USA
[6] Harvard MIT, Div Hlth Sci & Technol, Boston, MA USA
基金
美国医疗保健研究与质量局; 美国国家卫生研究院;
关键词
bias analysis; double robustness; g-formula; generalizability; inverse probability weighting; sensitivity analysis; transportability; SEMIPARAMETRIC ESTIMATION; PROPENSITY SCORE; CLINICAL-TRIALS; REGRESSION; EFFICIENCY; COVARIATE; THERAPY; MODELS;
D O I
10.1002/sim.9550
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extending (i.e., generalizing or transporting) causal inferences from a randomized trial to a target population requires assumptions that randomized and nonrandomized individuals are exchangeable conditional on baseline covariates. These assumptions are made on the basis of background knowledge, which is often uncertain or controversial, and need to be subjected to sensitivity analysis. We present simple methods for sensitivity analyses that directly parameterize violations of the assumptions using bias functions and do not require detailed background knowledge about specific unknown or unmeasured determinants of the outcome or modifiers of the treatment effect. We show how the methods can be applied to non-nested trial designs, where the trial data are combined with a separately obtained sample of nonrandomized individuals, as well as to nested trial designs, where the trial is embedded within a cohort sampled from the target population.
引用
收藏
页码:2029 / 2043
页数:15
相关论文
共 50 条
  • [1] Extending inferences from a randomized trial to a target population
    Dahabreh, Issa J.
    Hernan, Miguel A.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2019, 34 (08) : 719 - 722
  • [2] Extending inferences from a randomized trial to a target population
    Issa J. Dahabreh
    Miguel A. Hernán
    [J]. European Journal of Epidemiology, 2019, 34 : 719 - 722
  • [3] Extending inferences from a randomized trial to a new target population
    Dahabreh, Issa J.
    Robertson, Sarah E.
    Steingrimsson, Jon A.
    Stuart, Elizabeth A.
    Hernan, Miguel A.
    [J]. STATISTICS IN MEDICINE, 2020, 39 (14) : 1999 - 2014
  • [4] EXTENDING INFERENCES FROM A CLUSTER RANDOMIZED TRIAL TO A TARGET POPULATION
    Dahabreh, I. J.
    Robertson, S. E.
    Steingrimsson, J. A.
    Gravenstein, S.
    Joyce, N.
    [J]. VALUE IN HEALTH, 2020, 23 : S182 - S182
  • [5] Extending Inferences from a Cluster-Randomized Trial to a Target Population
    Dahabreh, I.
    Robertson, S.
    Steingrimsson, J.
    Gravenstein, S.
    Joyce, N.
    [J]. HEALTH SERVICES RESEARCH, 2020, 55 : 109 - 110
  • [6] Study Designs for Extending Causal Inferences From a Randomized Trial to a Target Population
    Dahabreh, Issa J.
    Haneuse, Sebastien J-P A.
    Robins, James M.
    Robertson, Sarah E.
    Buchanan, Ashley L.
    Stuart, Elizabeth A.
    Hernan, Miguel A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (08) : 1632 - 1642
  • [7] Regression-based estimation of heterogeneous treatment effects when extending inferences from a randomized trial to a target population
    Robertson, Sarah E. E.
    Steingrimsson, Jon A. A.
    Dahabreh, Issa J. J.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2023, 38 (02) : 123 - 133
  • [8] Regression-based estimation of heterogeneous treatment effects when extending inferences from a randomized trial to a target population
    Sarah E. Robertson
    Jon A. Steingrimsson
    Issa J. Dahabreh
    [J]. European Journal of Epidemiology, 2023, 38 : 123 - 133
  • [9] Transportability Analysis-A Tool for Extending Trial Results to a Representative Target Population
    Inoue, Kosuke
    Hsu, William
    [J]. JAMA NETWORK OPEN, 2024, 7 (01)
  • [10] Toward Causally Interpretable Meta-analysis Transporting Inferences from Multiple Randomized Trials to a New Target Population
    Dahabreh, Issa J.
    Petito, Lucia C.
    Robertson, Sarah E.
    Hernan, Miguel A.
    Steingrimsson, Jon A.
    [J]. EPIDEMIOLOGY, 2020, 31 (03) : 334 - 344