Influence of wall thickness on microstructure and mechanical properties of thin-walled 316L stainless steel produced by laser powder bed fusion

被引:2
|
作者
Wrobel, R. [1 ,2 ]
Del Guidice, L. [3 ]
Scheel, P. [1 ,4 ]
Abando, N. [2 ]
Maeder, X. [5 ]
Vassiliou, M. [3 ]
Hosseini, E. [1 ,4 ]
Spolenak, R. [2 ]
Leinenbach, C. [1 ,6 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Dubendorf, Switzerland
[2] Swiss Fed Inst Technol, Dept Mat, Lab Nanomet, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Inst Struct Engn, Dept Civil Environm & Geomat Engn, Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Mech Syst, Dept Mech & Proc Engn, Zurich, Switzerland
[5] Empa Swiss Fed Labs Mat Sci & Technol, Thun, Switzerland
[6] Ecole Polytech Fed Lausanne, Lab Photon Mat & Characterizat, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
Thin-walled structures; Laser powder bed fusion; 316L stainless steel; Thermal simulations; Mechanical tests; Microstructure; BUILD GEOMETRY; BEHAVIOR; TEXTURE; ALLOY; DENUDATION; PARAMETERS; SPATTER; PHYSICS;
D O I
10.1016/j.matdes.2024.112652
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (L-PBF) allows for the fabrication of samples with complex geometries based on thin struts or walls. However, only few studies have focused on the effect of these geometries on the properties of the material fabricated using this technology. In this work, we studied the impact of wall thicknesses below 1 mm on microstructure formation and mechanical properties in 316L parts fabricated by L-PBF. The size and geometry of melt pools varied significantly between different wall thicknesses due to powder denudation and local preheating, resulting in non-symmetrical melt pools for thicker samples. Furthermore, in the sub-grain microstructure, the thinnest samples consisted of solidification cells oriented almost parallel to the building direction. In the thicker walls, side branching and slender columnar grains were observed in the center lines of the melt pools. On the grain size scale, the thinnest samples consisted of finer grains with a more pronounced texture (100), while large grains growing parallel to the build direction and texture (101) were found for the thicker samples. Mechanical tests showed that the strength and ductility were higher in thicker samples, which was attributed to finer solidification cells.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [1] Influence of the Processing Parameters on the Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Barrionuevo, German Omar
    Ramos-Grez, Jorge Andres
    Sanchez-Sanchez, Xavier
    Zapata-Hidalgo, Daniel
    Mullo, Jose Luis
    Puma-Araujo, Santiago D.
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2024, 8 (01):
  • [2] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [3] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    Materials Science and Engineering: A, 2021, 802
  • [4] Microstructure-Toughness relationships in 316L stainless steel produced by laser powder bed fusion
    de Sonis, Edouard
    Depinoy, Sylvain
    Giroux, Pierre-Francois
    Maskrot, Hicham
    Wident, Pierre
    Hercher, Olivier
    Villaret, Flore
    Gourgues-Lorenzon, Anne-Francoise
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 877
  • [5] Effect of thickness and build direction on the mechanical behavior and microstructure of AISI 316L stainless steel produced by Laser Beam Powder Bed Fusion
    Yasa, Evren
    Karasoglu, Mutlu
    KOVOVE MATERIALY-METALLIC MATERIALS, 2022, 60 (01): : 55 - 65
  • [6] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [7] High-power laser powder bed fusion of 316L stainless steel: Defects, microstructure, and mechanical properties
    Huang, Gao
    Wei, Kaiwen
    Deng, Jinfeng
    Liu, Mengna
    Zeng, Xiaoyan
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 83 : 235 - 245
  • [8] Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process
    Wang, Xianglong
    Muniz-Lerma, Jose Alberto
    Sanchez-Mata, Oscar
    Shandiz, Mohammad Attarian
    Brochu, Mathieu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 736 : 27 - 40
  • [9] Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel
    Bertoli, Umberto Scipioni
    MacDonald, Benjamin E.
    Schoenung, Julie M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 739 : 109 - 117
  • [10] Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel
    Pitrmuc, Zdenek
    Simota, Jan
    Beranek, Libor
    Mikes, Petr
    Andronov, Vladislav
    Sommer, Jiri
    Holesovsky, Frantisek
    MATERIALS, 2022, 15 (02)