Research progress of ion trap quantum computing

被引:0
|
作者
Wu, Yu-Kai [1 ,2 ]
Duan, Lu-Ming [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[2] Heifei Natl Lab, Hefei 230088, Peoples R China
[3] New Cornerstone Sci Lab, Beijing 100084, Peoples R China
关键词
quantum computation; ion trap; qubit; LOGIC;
D O I
10.7498/aps.72.20231128
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ion trap is one of the leading physical platforms to implement quantum computation. Currently, highfidelity elementary quantum operations above the fault -tolerant threshold, including state preparation, measurement and universal gates, have been demonstrated for tens of ionic qubits. One important future research direction is to further enlarge the qubit number to the scale required for solving practical problems while maintaining the high performance of individual qubits. This paper introduces the current mainstream schemes for scalable ion trap quantum computation like quantum charge -coupled device (QCCD) and ionphoton quantum network, and describes the main limiting factors in current research. Then we further explore new schemes to scale up the qubit number like two-dimensional ion crystals and dual -type qubit, and discuss the future research directions.
引用
收藏
页数:7
相关论文
共 29 条
  • [1] omg blueprint for trapped ion quantum computing with metastable states
    Allcock, D. T. C.
    Campbell, W. C.
    Chiaverini, J.
    Chuang, I. L.
    Hudson, E. R.
    Moore, I. D.
    Ransford, A.
    Roman, C.
    Sage, J. M.
    Wineland, D. J.
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (21)
  • [2] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [3] Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes
    Ballance, C. J.
    Schaefer, V. M.
    Home, J. P.
    Szwer, D. J.
    Webster, S. C.
    Allcock, D. T. C.
    Linke, N. M.
    Harty, T. P.
    Craik, D. P. L. Aude
    Stacey, D. N.
    Steane, A. M.
    Lucas, D. M.
    [J]. NATURE, 2015, 528 (7582) : 384 - +
  • [4] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    [J]. APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [5] QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS
    CIRAC, JI
    ZOLLER, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4091 - 4094
  • [6] Robust Quantum Memory in a Trapped-Ion Quantum Network Node
    Drmota, P.
    Main, D.
    Nadlinger, D. P.
    Nichol, B. C.
    Weber, M. A.
    Ainley, E. M.
    Agrawal, A.
    Srinivas, R.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [7] Colloquium: Quantum networks with trapped ions
    Duan, L. -M.
    Monroe, C.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (02) : 1209 - 1224
  • [8] Duan L M, 2022, China Patent, Patent No. [112749808B, 112749808]
  • [9] Fault-tolerant control of an error-corrected qubit
    Egan, Laird
    Debroy, Dripto M.
    Noel, Crystal
    Risinger, Andrew
    Zhu, Daiwei
    Biswas, Debopriyo
    Newman, Michael
    Li, Muyuan
    Brown, Kenneth R.
    Cetina, Marko
    Monroe, Christopher
    [J]. NATURE, 2021, 598 (7880) : 281 - +
  • [10] Feng L, 2024, Arxiv, DOI arXiv:2306.14405