Viscoelastic relaxation of fibroblasts over stiff polyacrylamide gels by atomic force microscopy

被引:3
|
作者
Moura, A. L. D. [1 ]
Santos, W., V [1 ]
Sousa, F. D. [2 ]
Freire, R. S. [3 ]
de Oliveira, C. L. N. [1 ]
de Sousa, J. S. [1 ]
机构
[1] Univ Fed Ceara, Dept Fis, Fortaleza, Ceara, Brazil
[2] Univ Fortaleza, Nucleo Biol Expt, Fortaleza, Ceara, Brazil
[3] Univ Fed Ceara, Cent Anal, Fortaleza, Ceara, Brazil
来源
NANO EXPRESS | 2023年 / 4卷 / 03期
关键词
cell viscoelasticity; atomic force microscopy; power-law relaxation; mechanostransduction; CELL MECHANICS; SUBSTRATE STIFFNESS; CANCER PROGRESSION; FOCAL ADHESIONS; RIGIDITY; PRESTRESS; DYNAMICS; RHEOLOGY; MICROENVIRONMENT; DIFFERENTIATION;
D O I
10.1088/2632-959X/acf1b8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cell viscoelasticity provides mechanistic insights into fundamental biological functions and may be used in many applications. Using atomic force microscopy in time and frequency domains, we find a peculiar behavior in the viscoelastic relaxation of L929 mouse fibroblasts that may help understand how cells perceive and adapt to distinct extracellular environments. They are stiffer when cultured over polyacrylamide gels (20-350 kPa) than over glass-bottom Petri dishes. The stiffness enhancement of cells over gels is attributed to a significant increase in the low-frequency storage shear moduli compared to the loss moduli, indicating that gels induce a remodeling of cytoskeleton components that store elastic energy. Morphological alterations are then expressed by the fractal dimension measured on confocal images of the f-actin cytoskeleton. We show a direct scaling between the fractal dimension and the substrate's rigidity.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy
    Charrier, Elisabeth E.
    Pogoda, Katarzyna
    Li, Robin
    Park, Chan Young
    Fredberg, Jeffrey J.
    Janmey, Paul A.
    APL BIOENGINEERING, 2020, 4 (03):
  • [2] Spatial and temporal viscoelastic imaging of living fibroblasts by atomic force microscopy
    Haga, H
    Sasaki, S
    Kawabata, K
    Ito, E
    Abe, K
    Sambongi, T
    BIOLOGICAL PHYSICS, 1999, 487 : 229 - 234
  • [3] Soil gels by atomic force microscopy
    Fedotov, G. N.
    Itkis, D. M.
    Putlyaev, V. I.
    Omel'yanyuk, G. G.
    Nikulina, M. V.
    DOKLADY CHEMISTRY, 2008, 421 (1) : 168 - 170
  • [4] Soil gels by atomic force microscopy
    G. N. Fedotov
    D. M. Itkis
    V. I. Putlyaev
    G. G. Omel’yanyuk
    M. V. Nikulina
    Doklady Chemistry, 2008, 421 : 168 - 170
  • [5] Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy
    Mahaffy, RE
    Park, S
    Gerde, E
    Käs, J
    Shih, CK
    BIOPHYSICAL JOURNAL, 2004, 86 (03) : 1777 - 1793
  • [6] A Validation Study of the Repeatability and Accuracy of Atomic Force Microscopy Indentation Using Polyacrylamide Gels and Colloidal Probes
    Lee, Donghee
    Ryu, Sangjin
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (04):
  • [7] Analytical model of atomic-force-microscopy force curves in viscoelastic materials exhibiting power law relaxation
    de Sousa, J. S.
    Santos, J. A. C.
    Barros, E. B.
    Alencar, L. M. R.
    Cruz, W. T.
    Ramos, M. V.
    Mendes Filho, J.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (03)
  • [8] Multiple power-law viscoelastic relaxation in time and frequency domains with atomic force microscopy
    de Sousa, F. B.
    Babu, P. K., V
    Radmacher, M.
    Oliveira, C. L. N.
    de Sousa, J. S.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (33)
  • [9] Investigation of gellan networks and gels by atomic force microscopy
    Gunning, AP
    Kirby, AR
    Ridout, MJ
    Brownsey, GJ
    Morris, VJ
    MACROMOLECULES, 1996, 29 (21) : 6791 - 6796
  • [10] Pore size of agarose gels by atomic force microscopy
    Pernodet, N
    Maaloum, M
    Tinland, B
    ELECTROPHORESIS, 1997, 18 (01) : 55 - 58