Exploring attention mechanism for graph similarity learning

被引:0
|
作者
Tan, Wenhui [1 ]
Gao, Xin [1 ]
Li, Yiyang [1 ]
Wen, Guangqi [1 ]
Cao, Peng [1 ,2 ]
Yang, Jinzhu [1 ,2 ]
Li, Weiping [3 ]
Zaiane, Osmar R. [4 ]
机构
[1] Northeastern Univ, Comp Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang, Peoples R China
[3] Peking Univ, Sch Software & Microelect, Beijing, Peoples R China
[4] Univ Alberta, Alberta Machine Intelligence Inst, Edmonton, AB, Canada
关键词
Graph similarity; Graph neural network; Multi-head self-attention; Deep learning; Graph embedding learning; COMPUTATION;
D O I
10.1016/j.knosys.2023.110739
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph similarity estimation is a challenging task due to the complex graph structure. Though important and well-studied, three key aspects are yet to be fully handled in a unified framework: (i) how to exploit the node embedding by leveraging both local spatial neighborhood information and the global context, (ii) how to effectively learn richer cross graph interactions from a pairwise node perspective and (iii) how to map the similarity matrix into a similarity score by exploiting the inherent structure in the similarity matrix. To solve these issues, we explore multiple attention mechanisms for graph similarity learning in this work. More specifically, we propose a unified graph similarity learning framework involving (i) a hybrid of graph convolution and graph self-attention for node embedding learning, (ii) a cross graph co-attention (GCA) module for graph interaction modeling, (iii) similarity-wise self-attention (SSA) module for graph similarity matrix alignment and (iv) graph similarity matrix learning for predicting the similarity scores. Extensive experimental results on three challenging benchmarks including LINUX, AIDS, and IMDBMulti demonstrate that the proposed NA-GSL performs favorably against state-of-the-art graph similarity estimation methods. The code is available at https://github.com/AlbertTan404/NA-GSL. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Graph Representation Learning Algorithm Based on Attention Mechanism and Node Similarity
    Guo, Kun
    Wang, Deqin
    Huang, Jiangsheng
    Chen, Yuzhong
    Zhu, Zhihao
    Zheng, Jianning
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2019, 2019, 1042 : 591 - 604
  • [2] Hierarchical Deep Multitask Learning With the Attention Mechanism for Similarity Learning
    Huang, Yan
    Wang, Qicong
    Yang, Wenming
    Liao, Qingmin
    Meng, Hongying
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (04) : 1729 - 1742
  • [3] Cosine similarity distance pruning algorithm Based on graph attention mechanism
    Yao, Huaxiong
    Huang, Yang
    Hu, Jiabei
    Xie, Wenqi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3311 - 3318
  • [4] Heterogeneous Graph Contrastive Learning with Attention Mechanism for Recommendation
    Li, Ruxing
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (10) : 1930 - 1938
  • [5] Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
    Miao, Siqi
    Liu, Miaoyuan
    Li, Pan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [6] Incorporating Graph Attention Mechanism into Knowledge Graph Reasoning Based on Deep Reinforcement Learning
    Wang, Heng
    Li, Shuangyin
    Pan, Rong
    Mao, Mingzhi
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 2623 - 2631
  • [7] Robust Representation Learning via Sparse Attention Mechanism for Similarity Models
    Ermilova, Alina
    Baramiia, Nikita
    Kornilov, Valerii
    Petrakov, Sergey
    Zaytsev, Alexey
    IEEE ACCESS, 2024, 12 : 97833 - 97850
  • [8] Hybrid-attention mechanism based heterogeneous graph representation learning
    Wang, Xiang
    Deng, Weikang
    Meng, Zhenyu
    Chen, Dewang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [9] A REGULARIZED ATTENTION MECHANISM FOR GRAPH ATTENTION NETWORKS
    Shanthamallu, Uday Shankar
    Jayaraman, J. Thiagarajan
    Spanias, Andreas
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3372 - 3376
  • [10] Binary Function Similarity Detection Based on Graph Neural Network with Self-Attention Mechanism
    Wu, Dingjie
    He, Xuanzhang
    Zhang, Yao
    Zhu, Junjie
    Zhang, Xinyuan
    Ye, Minchao
    Gao, Zhigang
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 971 - 975