Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zero-valent iron aerogel from aqueous solution: Application performance and reaction mechanism

被引:25
|
作者
Wang, Tingting
Sun, Yongchang
Bai, Lu
Han, Caohui
Sun, Xiaoyin
机构
[1] Changan Univ, Sch Water & Environm, Key Lab Subsurface Hydrol & Ecol Effects Arid Reg, Minist Educ, Xian 710054, Peoples R China
[2] Changan Univ, Sch Water & Environm, Dept Environm Engn, Xian 710054, Peoples R China
关键词
Biochar; nZVI; Chitosan; Adsorption; Cr(VI); NZVI; COMPOSITE; ADSORPTION; CHROMIUM;
D O I
10.1016/j.seppur.2022.122631
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Chitosan coated biochar-supported nano zero-valent iron aerogel (C-nZVI@BC) was successfully synthesized for the efficient removal of Cr(VI) from aqueous solution. Results showed that the C-nZVI@BC has a 2.1-fold higher adsorption capacity of Cr(VI) than the uncoated sample. Chitosan coating on nZVI@BC and BC support could prevent the oxidation and agglomeration of nZVI. Ultrafast adsorption of Cr(VI) with 61 %, 77 %, and 87 % of the maximum adsorption capacities were achieved within 1 min with the initial concentrations of Cr(VI) at 100 mg/ L, 300 mg/L, and 600 mg/L, respectively. The C-nZVI@BC exhibited high adsorption performance under aerobic conditions, and showed high Cr(VI) removal rates (>83 %) in a wide pH range (2-8). Cr(VI) and Cr(III) could be simultaneously removed by C-nZVI@BC, and the key mechanisms were adsorption, reduction, and complexation. The acid and alkali resistance experiment of C-nZVI@BC showed that C-nZVI@BC still has better adsorption capacity of Cr(VI) (96.7 mg/g) in acid environment. The application of C-nZVI@BC in the simulated electro-plating wastewater treatment indicated a high removal rate of Cr(VI). C-nZVI@BC could effectively reduce the low concentration of Cr(VI) below the standard of the World Health Organization. The syringe filtration and column adsorption experiments implied the potential of C-nZVI@BC for Cr(VI) removal in groundwater. In addition, C-nZVI@BC could be a direct reducing agent for Cr(VI) and an activator of persulfate (PS) for the degradation of antibiotics, and C-nZVI@BC + PS showed 77 % and 82 % removal of tetracycline and chlortet-racycline within 5 min. Overall, C-nZVI@BC was a suitable adsorbent for pollutant removal.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Removal of Cr(VI) by a simply prepared biochar-supported nanoscale zero-valent iron
    Cao, Chun-Yan
    Chen, Si-Lin
    Wan, Xin
    Wang, Min
    Song, Zhi-Guo
    Zhao, Shuang
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2022, 97 (10) : 2739 - 2746
  • [2] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Mao, Yujie
    Tao, Yufang
    Zhang, Xulin
    Chu, Zhaopeng
    Zhang, Xinyi
    Huang, He
    [J]. WATER AIR AND SOIL POLLUTION, 2023, 234 (03):
  • [3] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Yujie Mao
    Yufang Tao
    Xulin Zhang
    Zhaopeng Chu
    Xinyi Zhang
    He Huang
    [J]. Water, Air, & Soil Pollution, 2023, 234
  • [4] Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron
    Qian, Linbo
    Shang, Xiao
    Zhang, Bo
    Zhang, Wenying
    Su, Anqi
    Chen, Yun
    Ouyang, Da
    Han, Lu
    Yan, Jingchun
    Chen, Mengfang
    [J]. CHEMOSPHERE, 2019, 215 : 739 - 745
  • [5] Optimisation of preparation conditions and removal mechanism for trivalent antimony by biochar-supported nano zero-valent iron
    Ji, Jianghao
    Xu, Siqin
    Ma, Zhiqiang
    Mou, Yizhen
    [J]. ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2022, 26
  • [6] Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron
    Yin, Yanan
    Wang, Jianlong
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5864 - 5868
  • [7] Enhanced removal of Cr(VI) from aqueous solution by nano- zero-valent iron supported by KOH activated sludge-based biochar
    Wang, Hui
    Zhong, Dengjie
    Xu, Yunlan
    Chang, Haixing
    Shen, Hongyu
    Xu, Chunzi
    Mou, Jiaxing
    Zhong, Nianbing
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 651
  • [8] Enhancement of Cr(VI) removal from aqueous solution by carboxymethyl chitosan coated nano-zero-valent iron beads
    Xie, Yanhua
    Zhang, Lulu
    Ren, Lulu
    Yang, Jinglong
    Zhu, Xueqian
    Yi, Yan
    Zhou, Tingheng
    [J]. DESALINATION AND WATER TREATMENT, 2018, 108 : 268 - 278
  • [9] Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution
    Dong, Haoran
    Deng, Junmin
    Xie, Yankai
    Zhang, Cong
    Jiang, Zhao
    Cheng, Yujun
    Hou, Kunjie
    Zeng, Guangming
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2017, 332 : 79 - 86
  • [10] The synthesis of biochar-supported nano zero-valent iron composite and its adsorption performance in removal of malachite green
    Gizem Müjde Yıldırım
    Bahar Bayrak
    [J]. Biomass Conversion and Biorefinery, 2022, 12 : 4785 - 4797