CONVOLUTION OF BETA PRIME DISTRIBUTION

被引:1
|
作者
Ferreira, Rui A. C. [1 ]
Simon, Thomas [2 ]
机构
[1] Univ Lisbon, Grp Fis Matemat, Dept Matemat, Fac Ciencias, Av Prof Gama Pinto 2, P-1649003 Lisbon, Portugal
[2] Univ Lille, CNRS, UMR 8524, Lab Paul Painlevu, F-59000 Lille, France
关键词
Appell series; beta prime distribution; complete monotonicity; confluent; hypergeometric function; hypergeometric series; Mill's ratio; parabolic cylinder function; self-decomposability; stochastic ordering; Thomae's relations; Thorin measure; Turan's inequality; TURAN TYPE INEQUALITIES; MONOTONICITY;
D O I
10.1090/tran/8748
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish some identities in law for the convolution of a beta prime distribution with itself, involving the square root of beta distributions. The proof of these identities relies on transformations on generalized hypergeometric series obtained via Appell series of the first kind and Thomae's relationships for 3F(2)(1). Using a self-decomposability argument, the identities are applied to derive complete monotonicity properties for quotients of confluent hypergeometric functions having a doubling character. By means of probability, we also obtain a simple proof of Tur ' an's inequality for the parabolic cylinder function and the confluent hypergeometric function of the second kind. The case of Mill's ratio is discussed in detail.
引用
收藏
页码:855 / 890
页数:36
相关论文
共 50 条
  • [1] Remarks on a Free Analogue of the Beta Prime Distribution
    Yoshida, Hiroaki
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (03) : 1363 - 1400
  • [2] Remarks on a Free Analogue of the Beta Prime Distribution
    Hiroaki Yoshida
    Journal of Theoretical Probability, 2020, 33 : 1363 - 1400
  • [3] Generalized Beta Prime Distribution Applied to Finite Element Error Approximation
    Chaskalovic, Joel
    Assous, Franck
    AXIOMS, 2022, 11 (03)
  • [4] Fast algebraic convolution for prime power lengths
    Creutzburg, R
    Minkwitz, T
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 1073 - 1076
  • [5] Convolution sums of a divisor function for prime levels
    Cho, Bumkyu
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (03) : 537 - 546
  • [6] NO DISTRIBUTION IS PRIME
    RUZSA, IZ
    SZEKELY, GJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02): : 263 - 269
  • [7] ON CONVOLUTION OF DISTRIBUTION FUNCTIONS
    SCHWEIZE.B
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (07): : 745 - &
  • [8] PLASTICITY OF BETA AND BETA PRIME INTERMETALLIC COMPOUNDS
    GAVERT, RB
    MACK, DJ
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1967, 239 (01): : 130 - &
  • [9] The type I distribution of the ratio of independent "Weibullized" generalized beta-prime variables
    Bekker, Andriette
    Roux, Jacobus
    Pham-Gia, Thu
    STATISTICAL PAPERS, 2009, 50 (02) : 323 - 338
  • [10] The type I distribution of the ratio of independent “Weibullized” generalized beta-prime variables
    Andriëtte Bekker
    Jacobus Roux
    Thu Pham-Gia
    Statistical Papers, 2009, 50 : 323 - 338